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AN ALGEBRAIC PROGRAM FOR THE STATES ASSOCIATED
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A REDUCE program is presented that calculates algebraically the y-dependent part of the states associated with the
U(5) 2 O(5)  O(3) chain of groups, familiar from nuclear-structure problems. The method of solution is a direct implementa-
tion of the analytic expressions given by Chacdén and Moshinsky.

PROGRAM SUMMARY

Title of program: PHISYM

Catalogue number: ABFN

Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this
issue)

Computer: VAX 8650

Operating system: VMS Version 4.7

Programming language used: REDUCE

High speed storage required: depends on the problem, mini-
mum 0.5 Mbytes

No. of bits in a word: 32
No. of lines in combined program and test deck: 261

Keywords: U(5) D O(5) © O(3) chain of groups, interacting bo-
son approximation, geometrical collective model, five-dimen-
sional harmonic oscillator, quadrupole vibrations of the
nucleus, wave functions for y-degree of freedom, computer-as-
sisted algebra, REDUCE

! NATO fellow for the academic year 1987-88.
2 On leave of absence from University of Coimbra, Portugal.

Nature of physical problem

Group theoretical ideas and, in particular, states associated
with the U(5) D O(5) 2 O(3) chain of groups are widely used to
describe properties of nuclei, both within the framework of the
interacting boson approximation and of the geometric collec-
tive models of the Frankfurt group. Among the many processes
and properties this chain has been applied to, prominent are
the low-energy nuclear spectra, Coulomb excitation and
medium-energy proton scattering, and the photoabsorption of
the giant dipole resonance in deformed nuclei.

Method of solution
Direct implementation of algebraic expressions in ref. [1].

Restrictions on the complexity of the problem

The available computer memory in combination with the
automatic space allocations of REDUCE is the severest
restriction in the present full arithmetic version. This situation
may be alleviated by splitting the calculation into several
smaller steps *.

Typical running time

This depends strongly on the complexity of the problem and
cannot be estimated in advance. (See the test run output for
specific examples.)

Reference
[1] E. Chacon and M. Moshinsky, J. Math. Phys. 18 (1977)
870.

* A more effective approach is the preparation of “bigfloat”
versions. Work in this respect is in progress.
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(North-Holland Physics Publishing Division)
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LONG WRITE-UP
1. Introduction

The concept of symmetries has found applica-
tions in various branches of physics. In particular,
one of the recent important developments in
nuclear physics has been the application of sym-
metry ideas and algebraic techniques to nuclear
structure [1,2]. In this approach the Hamiltonian
of the system is invariant under a certain class of
transformations which form a group. Assuming
such a Hamiltonian and such a group, the power-
ful and elegant techniques of group theory can be
applied. These techniques, however, involve com-
plicated algebraic manipulations. The degree of
complication is such that in several physically
important cases — like the case of the recently
discovered octupole-deformed nuclei (see, part 1
in ref. [2]) - closed analytic results are still far
from being produced in spite of the power of the
group theoretical analysis. Invariably, one had to
use numerical analysis to go beyond the limita-
tions of human capability for algebraic manipula-
tion.

Recently, however, a new advanced technique
in computational physics was made available with
the introduction of symbolic and algebraic com-
puter codes like REDUCE [3] and MACSYMA
[4]. Computer-assisted algebra is useful to fields
where the scientist is confronted with a prohibitive
degree of algebraic manipulations [5-7]. It can
naturally be of great assistance to the field of the
applications of group theory to nuclear physics.

The aim of the present paper is to motivate
such a development by presenting a specific first
example. In particular, we present a REDUCE
program which calculates the states characterized
by irreducible representations of the U(5) D O(5)
5 0O(3) chain of groups. The particular physical
significance of this chain and its applications will
be discussed briefly in the rest of the introduction.

Much of the group theoretical work in nuclear
physics has centered around the Interacting Boson
Approximation (IBA) model [1] and its extensions
[8]. In IBA, one assumes that the low-lying excita-
tions can be described by a Hamiltonian built out
of bosons with angular momentum 0 (s bosons) or

2 (d bosons). The usefulness of such a Hamilto-
nian is manifested when the corresponding group
structure is invoked. A group decomposition shows
that there are three distinct chains, namely U(5) D
O(5) 2 O(3), a five-dimensional harmonic oscilla-
tor, SU(3) D O(3), an axial rotor, and O(6) = O(5)
5 O(3), a y-unstable rotor. For each of these three
limits, the characteristic wave functions are eigen-
states of specific terms of the IBA Hamiltonian.
While many examples of nuclei exist that corre-
spond, at least partially, to the above three limits,
most often this is not the case. In this case, one
has to diagonalize the IBA Hamiltonian in a
truncated space spanned by the states char-
acterized by irreducible representations of one of
the above chains, preferably the U(5) 2> O(5)>
O(3). which corresponds to quadrupole vibrations.
As an example of such a calculation we mention
ref. [9] for the low-lying spectrum of '**Er.

Group theoretical ideas are not restricted to the
IBA model. Indeed, in practice many phenomeno-
logical calculations of nuclear spectroscopy have
been carried out by the Frankfurt group, and it
was soon realized [10,11] that the chain U(5) D
O(5) D O(3) provided the link towards connecting
the IBA with the geometrical collective model of
the Frankfurt group. The geometric Hamiltonian
of the Frankfurt group extends the Bohr vibra-
tional Hamiltonian [12] to potential energy
surfaces nonlinear in the quadrupole coordinates,
thus being able to describe rotational and transi-
tional nuclet as well. As with the case of the IBA,
it was realized that the states associated with the
chain U(5) 2 O(5) D O(3) form also the physically
meaningful basis for the diagonalization [10,13] of
the geometric Hamiltonian (for specific applica-
tions of this method to ***U and '**Er, see refs.
[14,15)).

The usefulness of this chain is not restricted to
low-energy static nuclear properties. Indeed,
multi-step processes such as those encountered in
Coulomb excitation and in medium-energy proton
scattering and described with the IBA [{16-18], or
the photon absorption of the giant dipole reso-
nance in deformed nuclei — described either in a
geometric model [19,20] or in the IBA [20] -
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require the use of the states associated with the
U(5) 2 O(5) 2 O(3) chain as an ingredient in all
calculations.

Given the importance of this chain, substantial
effort within the framework of group theory has
been devoted in providing an exact and algebraic
determination of the states characterized by its
irreducible representations. In fact, four rather
lengthy papers {21,22,13,23] addressing this prob-
lem were published almost simultaneously and
closed analytic results were presented. In spite of
their closed analytic form, the y-dependent part of
these wave functions is very tedious to be algebrai-
cally manipulated by hand. Moreover, these states
were not normalized and not orthogonal in some
quantum numbers. The algebraic solution of the
orthonormalization problem was addressed in
several subsequent publications [24-26], but the
results were mixed from the point of view of
enhancing the efficiency of computational needs.

The present status is that, in spite of the alge-
braic nature and of the extent of a successful
implementation of group theoretical methods to
the problem, numerical computation {15,9,26] is
utilized to construct in practice the states of the
U(5) 2 O(5) © O(3) chain, a procedure that negates
many of the advantages of the algebraic method.
In particular, in the case of IBA, the standard
computer code is PHINT [27] which is a FOR-
TRAN program. In contrast to the numerical
computation, our approach is to develop algebraic
computer programs for the manipulation of the
states of the U(5) D O(5) D O(3) chain. Among the
many advantages, we mention the full-precision
arithmetic particularly suitable for high-power
trigonometric polynomials with alternating coeffi-
cients as in the present case, the efficient algebraic
integration over the y coordinate during the im-
plementation of the Gram-Schmidt orthonor-
malization procedure and the easy tabulation of
intermediate results for immediate use in subse-
quent steps.

Therefore, in a first step, we present here a
REDUCE program which calculates the y-depen-
dent part of the states characterized by irreducible
representations of the U(5) D O(5) D O(3) chain of
groups. In a subsequent publication, we intend to
present the algebraic codes for their orthonor-

malization. For the analytical expressions, we fol-
low the work of Chacén and Moshinsky [13].

2. States associated with the U(5) D O(5) > O(3)
chain of groups

As mentioned in the introduction, the states
associated with the chain U(5) D O(5) D O(3) are
the eigenstates of the five-dimensional harmonic
oscillator. The labeling of these states is done by
considering the full chain reduction displayed in
table 1, leading to the four quantum numbers
{N,A, L, M}.

Specifically, N gives the number of phonons
present in the corresponding state; A is the senior-
ity, and L and M are the quantum numbers for
the total angular momentum and its projection in
the laboratory frame, respectively. On top of these
four quantum numbers, a fifth one, related to the
number of phonon triplets coupled to momentum
zero and denoted here by p, is needed to yield a
fully defined and complete set of states.

It turns out that a convenient way of spanning
the five-dimensional coordinate space for the
harmonic oscillator is to consider the three Euler
angles 6,, i =1, 2, 3 and the two intrinsic 8 and y
shape variables [12,13]. The corresponding eigen-
states are written as

|NARLM

=FAB) ¥ & (v)[ D%+ (=) DE* &
K=0

/(1 +38x), 1)

where Fy(B) is expressed through appropriate
Laguerre polynomials [13] and D% are the usual
rotation matrices [28]. Notice that N =2n+A,
where # is an integer.

In the present work, we are interested in the
v-dependent part of eq. (1). This part is denoted
by ¢}*“(y). Due to symmetry considerations,

Table 1

Group U(5) 20(5) 203) D0(2)
Quantum number N A L M
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¢M'L(y) is nonzero for even values of the projec-
tion K as follows:

K=0,2,..., L for L = even, (2)
K=2,...,.L—-1 forL=odd.

The analytic expressions for the ¢)*“(y) are
summarized in tables 2 and 3. Two cases, one for
even angular momentum and another for odd
angular momentum are distinguished. In the odd
case, one introduces an auxiliary even momentum
and utilizes corresponding expressions from table
2. In table 2, notice that the lower index in SZ"(y)
is restricted to even values, and that (--- | ---)
is the usual Clebsch—-Gordan coefficient. With

Table 2
Angular momentum L = even

respect to ref. [13], the redundant factor
q /AQATREN/2 Gy FOR(cos 3y) and the (1/V3)
in g{¥(y) have been omitted here.

The wave functions ¢}**(y) form a complete
but nonorthonormal set. Symbolic programs for
their orthonormalization, as well as for evaluating
the matrix elements of potential terms of the form

m

cos™(3v) will be presented in a future publication.

3. Description of symbolic program

At the top level, the calculation of the wave

functions ¢}*“(v) follows the flow chart in fig. 1,

4>),‘("”(y) :ZG}}"(y)E,‘""(cos 3v); o+r=L/2,0+27+3u=X, 0, 7. 020,

GR(v)=(—V2)" X (L—=2n2n K’ K" |LK)SE " (v) S (=2v):
K'K"”

Qr+KyQer-gy lf/2i:l</41 ,
SF(v) = -
(4r)! P 2q—-K/2
Kpe+7—n)/2)
Fo™(cos3y) = (—1)* T 22 Yy G527 (cos 3y)
r=10
o — PR~ TR F2F - 2r)(3r)!

rn

22T A+ DN (e r =) (T —n=2r)!

L
O<sn<—; —=<A-3ux<lL
2 2

min(e, A. 3r—7+n)

s = max(n —71.0)

B 7 ] y2e- K2 o . .
)(* q’m)(\@)r(ﬁ) (cosy) M iy ) M

2V3

wtT-n 2r

(=) 4 (r+s)QA+1-2s)! '
sWo—s¥Wr—n+sYCBr—7+n—s)(A—s) '

Table 3
Angular momentum L = odd

oRE(y) =ZG;’§Z(7)F;,"”‘(COS 3y); L=L-3,A=X-3,(L=ceven):

GRE(v) = Y (L3Kk|LKYGR (v) g (v): 8P (v) =sin3y(8,,— 8, ,):

Kk
u+71-~n)/2)

BT Ay 2 Z

r=0

Fe™(cos3y) =(—1)

cr -
2P QA+ DI (p r =) (pH T —n—2r)!
L L+3 _ —

O<n<—: <A-3u<L
2 2

Cor2~"(cos 3y)

oA +3)( =) 2 (2u+27+1=27)1(3r)t MM AT I

s=max(n—7.0)

pAT—n o 2r

(=)' #(r+ ) QA +T-2s) _
s o—s)(r—n+s)Br—r+n—s)(A+3—s)
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Levenand L/2<A-3u<Land |K|<L w
no
OR ERROR
Loddand (L+3)/2<A-3u<Land |K|<L-1
yes

yes

K odd j
OR
Loddand K =0/

| ZERO

where G(G) and F(F) are the functions tabulated
in tables 2 and 3. At a second level, the functions
G(G), F(F) are calculated with the help of S,
C(C) and DLT (delta function). The wave func-
tion ¢)*£(y) is represented by PHI(lam, mu, L, K).
The expressions for F and F were modified in

such a way that they can be calculated with the
same procedure (named F). The same is true for
the coefficients C and C.

Because of the structure of these functions, it is
likely that they will be required more than once
during the same REDUCE session. Therefore, their
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repeated evaluation can be avoided by storing
them in the operators AS, AG and AF, respec-
tively; this results in an additional saving of time
while computing different functions q&i‘g‘"(y)‘

The evaluation of the different functions re-
quires two auxiliary quantities: a table of factori-
als, which is stored in array FAC and
Clebsch—Gordan coefficients which are computed
using procedure CG. Finally, the functional de-
pendence of the functions ¢3*~(y) in terms of v is
controlled using the auxiliary procedure CONYV.
In the present case, CONYV sets the dependence of
¢}“L(y) exclusively in terms of powers of sin(y)
and cos(y). This form will be particularly useful
for symbolic integrations involving these func-
tions. Since in this REDUCE program full preci-
sion is kept throughout the calculation, the value
returned for a given qb’,‘("L(y) corresponds to its
actual analytic form. Moreover, the powerfulness
of the symbolic manipulation can be verified, e.g.,
in the case of the calculation of the functions G;
indeed, once the analytical expressions for S are
known, the SUBSTITUTION command makes it
trivial to compute the functions G. Notice that the
G’s are expressed as linear combinations of prod-
ucts of the form S(v)S(—2y) (cf. table 2).

4. How to run the program, examples

After calling REDUCE, the program PHISYM
must be input from a previously prepared file
using the command IN. Afterwards, all that is
necessary to do is to type,

phi(lambda, mu, L, K);

substituting lambda, mu, L and K by the desired
integer values.

Example 1. Producing all nonzero projections K for
a given L

We give all the intrinsic projections K for
momentum L =4 with A=10 and p=2. The
corresponding REDUCE statement is:

for i:=0 step 2 until 4
do write a(i) :== phi(10, 2, 4, i);

The results are exhibited in the test run output.

Example 2. Case of even angular momentum L

In ref. {9] the IBA was used to calculate the
low-lying spectrum of '“®*Er. This case corresponds
to a space of 16 bosons. The calculation was
extended up to angular momentum eight. We pro-
duce here the three ¢)**(v) with highest seniori-
ties that contribute to the basis of ref. [9]. The
REDUCE statements are given in the test run
output, together with the corresponding analytic
results. The chosen values for A and p correspond
to the most complicated cases. The rest of the
contributions to the basis can be easily computed
by using analogous statements.

Example 3. Case of odd angular momentum L

Ref. [15] calculated the low-lying spectrum of
'8Er using the geometrical collective model. Up
to thirty phonons were used to construct the
truncated basis. Among the ¢}*°(y) in this basis,
we produce here the two contributions with highest
seniorities. The REDUCE statements are given in
the test run output.
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TEST RUN OUTPUT

2: on time;

% ek EXAMPLE 1 ##w

5: operator a;
6: for 1:=0 step 2 until 4 do write a(i):zphi(10,2,4,1);

10 8 6
A(0) := - (90+(1680%SIN(G) - 4120%SIN(G) + 35B5#SIN(G) - 1320«
4 2
SIN(G) + 1B5#SIN(G} - 6))/SQRT(70)
8 6
AL2) 1= - (B5%SQRT(105)#SIN(G)#COS(G)»(6724SIN(G) - 1376#SIN(G} +
4 2
930%SIN(G) - 231«SIN(G) + 16))/(7x5QRT(5}}

2 8 6 4
A(4) 1= (B5%SIN(G) #(672xSIN(G) - 164BxSIN(G) + 13B6¥SIN(G) - 4al6s

2
SIN(G) + 47})/2

Time: 14230 ms

% *x% EXAMPLE 2 s»»

7:phi(15,3,8,0);

(31185«SQRT(78)+C0S(G)*(3452165IN(G) - 1172064+5IN(G) + 1571544+
10 8 6 4
SIN(G) - 1054010%SIN(G) + 368450+SIN(G) - 63183xSIN(G) +
2

4392»SIN(G) - 72))/(46748+SQRT(165))
Time: 17670 ms
8:phi(l6,3,8,0);
16 14
(315#SQRT(7B)#(19227648+SIN(G) - 75203904%SIN(G) + 120208560+

10 8
SIN(G) - 101142828«SIN(G) + 48027305«SIN(G} -

1277199A»SIN(G)6 + 1757407¢SIN(G)A - 1021:80;51:4(6)2 +
1464))/(572+SART(165) )

Time: 8410 ms

9:iphi(l16,4,8,0);

16 14
{35%5QRT(78)%(7594752%SIN(G) - 78018816%5IN(G) + 213073440«

12 10 8
SIN(G) - 260926992+5IN(G) + 1634757954SIN(G) -

a

6 4 2
52956256%SIN(G)  + B25692B%SIN(G) - 510720#SIN(G) +
7296))/(12341472%SQRT(165))

Time: 9270 ms

% sas EXAMPLE 3 ans
10:phi(28,8,5,4);

2 26 24
- {495#SQRT(42)%SIN(G) #(1100742656+SIN(G) - 7661748224+SIN(G) +

22 20
23796318208«SIN(G! - 43497439232+5IN(G) + 51969116160+

14
SIN(G) - 42621236736%SIN(G)  + 24520274688+SIN(G) -
8
9936357184«SIN(G) + 2B06490492+5IN(G) - 538283525«SIN(G)

6 4 2
+ 66909728«5IN(G) - 4975312#SIN(G)  +« 190976«SIN(G)} - 2688))

/{aB64x50RT(35))
Time: 12560 ms
11:phi(29,8,5,4);

2 26
- {14B5#SART(42)1%SIN{G) »COS(G)+{1100742656%SIN(GY - 7430012928+

24 22 20
SIN(G) + 22347972608#SIN(G) - 39500005376%SIN(G) +

16
45556393024»SIN(G) ~ 359985699B4x*SIN(G) + 19913177856%

14 12 10
SIN(G) - 7741221696+SIN(G) + 2092331644+SIN(G) -

8 & 4
382985525+SIN(G)  + 4529B188+SIN(G) -~ 3194744xSIN(G) +
2
115904xSIN(G) - 15363)/(12825QRT(35))

Time: 8010 ms



