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The damping of the giant monopole resonance in '°O is calculated within the framework of the
time-dependent Hartree-Fock approximation. The strength function contains two peaks, centered
at around 25 and 33 MeV, with escape widths of ~11 and ~2 MeV, associated with the 1p (0p)~!

and 15 (0s)~! configurations, respectively.

A giant vibration can be viewed as a state of a correlat-
ed particle above the Fermi surface and a hole in the Fer-
mi sea, carrying a large fraction of the energy-weighted
sum rule (EWSR).

There are three basic mechanisms which can weaken
or even obliterate the correlation: (i) The strength of the
vibration can be spread over many particle-hole com-
ponents; (ii) giant resonances (GR), being located above
particle threshold, can decay by proton and neutron
emission; and (iii) giant vibrations are imbedded in a
spectrum of high-level density to which they couple, de-
caying eventually into the compound nucleus.

The spreading within the space of particle-hole
configurations is known, in the case of infinite media, as
Landau damping.! In heavy, finite nuclei it gives rise to a
breaking of the strength of the vibration rather than to an
actual damping.? In the case of light nuclei, where the
unperturbed particle-hole excitations can be in the con-
tinuum, the phenomenon is very similar to that observed
in infinite systems. In any case, for economy we will still
characterize it by a single quantity [, .

Particle decay spreads the strength of the different
peaks of the giant resonance, and is measured by the es-
cape width I'!, while couplmg of the giant resonances to
the compound nucleus is controlled by the damping
width T'!, the total width T, being the sum of the three
contributions I'", " L>and 'Y,

The two first damping mechanisms, labeled (i) and (ii),
are present already at the level of the random-phase ap-
proxnmatlon (RPA), while a description of the dampmg
width T'! requires going beyond mean-field theory.? It
can then seem surprising that while little is known about
both T'" and ', , a satisfactory understanding of I'* ex-
ists. This is because the treatment of the continuum is al-
ways cumbersome,* and because the density distribution
of the unperturbed particle-hole energies is strongly
dependent on scarcely known details of the residual force,
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in particular those components responsible for the ex-
istence of the spin-orbit potential. On the other hand, I'!
is controlled by selected doorway states. Consequently,
once the correct degrees of freedom have been identified,
the resulting dampmg width is essentially independent of
the residual force.’

Because of the marked shell structure and the relative-
ly few single-particle bound states found in light nuclei,
T, is expected to be controlled by I'' and T' L» while their
rolc seems to be, as a rule, not important in heavy nuclei.

Tlme-dependent Hartree-Fock approximation (TDHF)
has been shown® to be a useful tool to describe particle
emission from giant resonances. In the present paper,
and starting from the results obtained in Ref. 6, we use
the same method to investigate in detail the mechanism
of particle emlssmn, therefore discriminating the roles
played by I' and T’ 1 in the attenuation of the amplitude
of the giant monopole resonance (GMR) in '°0.

The new points presented in this paper as compared to
Ref. 6 are (i) the separation of the density oscillations in
the contributions arising from the different orbitals; (ii)
the study of the time dependence of the amplitude of the
different components in the collective wave function; and
(iii) the extraction of the escaping widths I'! from these
quantities, as well as from the time dependence of the
mean-square radii associated with the different densities.
These results will allow us to conclude that essentially all
the width of the strength function obtained in Ref. 6 is
due to particle emission, Landau damping playing a small
role in the damping process (cf. also Ref. 7).

The effective force used in the calculations reads®

I +r1,

V(rl,r2)= t0+—é‘t3p 8(1‘1——1‘2) s (1)

with the values z5=—1000 (MeV fm® and r;=15000
(MeV fm®) for the Skyrme parameters, leading to a nu-
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clear matter compressibility of 430 MeV. The Hartree-
Fock (HF) ground state of '%0 is found to have a binding
energy of — 155 MeV, a root-mean-square radius of 2.43
fm, and the bound single-particle spectrum quoted in
Table I. The TDHF equations were solved in coordinate
space within a box of 40 fm.

An isoscalar monopole vibration was induced in the
system by boosting the static HF single-particle wave
functions with the operator

exp(—iKr?)
where
K =0.032 fm~2,

corresponding to an excitation energy of 8 MeV. A boost
with an excitation energy ten times smaller gives essen-
tially the same results as those presented below, indicat-
ing that the system is in the linear-response regime.

The main properties of the unperturbed monopole
response are schematically shown in Fig. 1. The only
bound 1p-1h excitation, 1s (0s)~1, lies at an excitation en-
ergy of 31.7 MeV, while there is a continuum of states
starting at ~19 MeV for 1p-1h configurations with a hole
in the Op state.

Solving the TDHF equations, the wave function ®(r,?)
is obtained. At t =0, ®(r,0) can be expanded in terms of
the different static HF configurations. For the situation
under consideration, the probabilities associated with the
ground state, the 1p-1h and the 2p-2h configurations, are
0.78, 0.20, and 0.02, respectively. They are rather con-
stant as a function of time [cf. Fig. 2(a)]. This reflects the
very weak coupling existing between 1p-lh and 2p-2h
configurations, which seems to imply a small value for
', In fact, these couplings (cf. Sec. 8 of Ref. 8) consti-
tute the doorway mechanism for producing the damping
width of the GR.’

Because of the very large energy difference existing be-
tween the static HF Os and Op bound states, we find the
density oscillations in time to display two main frequen-
cies associated with excitations based on these two
different single-particle states. Therefore, we will consid-
er them separately. In particular, we shall make use of
the partial L densities, s (L =0) and p (L =1), defined as

pL(r,t)=42L +1)|@.(r,t)|?, )

where @, (r,t) (L =0,1) are the time-dependent single-
particle wave functions evolved from the corresponding
static HF single-particle wave functions v, (r).

The contributions to the mean-square radius coming
from the particles in the s and p wave functions are
shown in Fig. 3(b). A marked increase of the radius is ob-

TABLE 1. Static Hartree-Fock single-particle spectrum. In
the case of the p state, the starting energy for the continuum of
states within the box is given.

Static HF single-particle spectrum

Single-particle level Os Op 0d Is Ip
Energy (MeV) —322 —182 —24 —-05 14
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FIG. 1. Schematic representation of the strength function for
the monopole boost. The vertical line represents the static HF
15(0s)~! particle-hole excitation; the two dashed lines illustrate
the continuum for static HF 1p-1h excitations, with a hole in
the Os and Op states. The solid curves correspond to Breit-
Wigner curves centered at the obtained values for the energies
of the two modes (24.5 and 33.0 MeV), and with the calculated
widths I'(p)=12 MeV and I'(s)=2.5 MeV.

served, which can be attributed to the emission of parti-
cles.® Extracting from these results the monotonic in-
crease, one can calculate the centroid and the summed
I'=T"+4T, average attenuation width of the oscillations
[cf. Fig. 3(c)]. They are schematically shown in Fig. 1,
and are equal to I'(p)~12 MeV and I'(s)~2.5 MeV.
The large difference between these two numbers is related
to the fact that #iw, lies 6 MeV above the starting of the
continuum, while #iw, is just at threshold, as we shall dis-
cuss in the following.

Figures 3(a) and 2(b) display the time dependence of
the particle emission process. From Fig. 3(a) one can ob-
serve that particles are shaken off from the nucleus with
largest probability at the time of maximum expansion,
the probability being smallest at the other extreme of the
oscillation, when the nucleus has reached its minimum
radius. The process of particle escape can be seen to ex-
tend over few oscillations, the more energetic particles
being emitted first, lending support to an energy depen-
dence of the decaying width. The average velocity of the
emitted particles was estimated by considering the time
displacement of the main peaks in Fig. 3(a), leading to the
values v, /¢ ~0.15 and v, /¢ ~0.22, where c is the veloci-
ty of light (cf. also Ref. 6).

Figure 2(b) gives further insight into the mechanism of
particle decay taking place from the peak associated with
the excitation of s particles. Because the unperturbed 1s
state is bound, all particle decay will go through the
ns(0s)~! configurations with n >1. The vibrational
mode then gets depopulated from its main component
(solid line) as a function of time, as the unbound com-
ponents go on losing particles. This is because the coher-
ence between the particle and the hole will maintain con-
stant the relative values of the different amplitudes parti-
cipating in the vibration. Consequently, the 1s(0s)~!
component decreases as the normalization of the mode
decreases. An exponential fit to the full drawn curve
displayed in Fig. 2(b) gives the value I'(s)~2.5 MeV for
the damping of the state, in agreement with the value ob-
tained above.
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FIG. 2. Probabilities for different configurations as a function of time: (a) The upper curve shows the probability for the system to
be in the HF ground state as a function of time. The middle curve displays the corresponding probability to have any static HF 1p-
1h excitation in time. The lower curve gives the probability of having 2p-2h configurations. (b) The probability of having any 1p-1h
excitation, with a hole in the static HF Os state (upper curve) is decomposed into two parts: the one in which the particle in the 1s
state (solid curve) and the part where the particle is in the continuum (lower dashed curve). An exponential fit to the solid curve
leads to the value I'(s)~2.5 MeV for the decaying rate of the probability.
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FIG. 3. Time evolution of the mean-square radius and the number of particles. On the left is shown the time evolution of the
number of particles and of the mean-square radius, corresponding to the s (L =0) mode. On the right the time evolution of the same
quantities is plotted for the p (L =1) mode [see Eq. (2)]. (a) Number of particles enclosed in spherical layers of different radii. The s
and p densities, defined in Eq. (2), were integrated in three different regions, delimited by the three pairs of spherical surfaces with ra-
dii (7,8), (8,9), and (9,10) fm, respectively. The different curves display both the motion and the spreading of the wave packets associ-
ated with the emitted particles. (b) Total mean-square radii as a function of time. Because the integration volume extends to the
whole box (40 fm), these mean-square radii receive contributions from the emitted particles. Subtracting the associated monotonic
increase isolates the oscillatory behavior. (c) The oscillatory behavior of the subtracted mean-square radii is clearly damped, as illus-
trated by the dashed lines, obtained by fitting the corresponding extrema with the function 4e ~"*/?%. The values obtained are
I'(s)~2.5 MeV and I'(p)~12 MeV. (d) The number of particles inside a sphere of radius R, (R;=8 and 12 fm in the case of the s
and p densities, respectively), centered at the nuclear origin, is displayed as a function of time. A fit to these curves with the function
(3) leads to the values I'(s)~2.2 MeV and I'(p)~11.0 MeV.
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In what follows we will attempt to disentangle the roles
played by I'" and T'; in the average attenuation widths
calculated above. This is done by studying the change of
the number of particles enclosed within a sphere contain-
ing the nucleus as a function of time [cf. Fig. 3(d)]. From
these results, one can extract an average escape width
through the relation (cf. also Ref. 7)

—rl:
n(t)=Ane '

7 nw) (i=sp). 3)
The resulting values for T'' are I''~2.2 MeV and
1‘;:11.0 MeV, respectively. When compared with the
previous values, obtained by fitting the curves of Figs.
2(b) and 3(c), they show that I'; is small, as one would
expect from more general arguments.?

From the results shown in Fig. 2 one can evaluate the
number of particles which were promoted to excited stat-
ic HF configurations by boosting the system. This result
coincides with that extracted estimating n( « ) from Fig.
3(d), by fitting the tails of these curves. This result again
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indicates that the central process contributing to the at-
tenuation of the modes is particle emission.

A schematic TDHF calculation of the GMR of %0
gives two peaks which are mainly associated with the ex-
citation of s and p particles. The width associated with
those states is of the order of I’ ~12.0 MeV and I’y ~2.5
MeV. By investigating the relation between the number
of particles which leave the nucleus as a function of time
and the attenuation of the monopole oscillations of the
system, one finds that most of the reported widths are
due to particle emission, with the resulting values of
[!~2.2MeV and '} ~11.0 MeV, both I'* and I';, being
small.
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