
ComputerPhysicsCommunications54 (1989)315—328 315
North-Holland, Amsterdam

ALGEBRAIC MANIPULATION OF THE STATESASSOCIATED
WITH THE U(5) D 0(5)D 0(3) CHAIN OF GROUPS:
ORTHONORMALIZATION AND MATRIX ELEMENTS

C. YANNOULEAS1 andJ.M. PACHECO 2

The Niels Bohr Institute, Universityof Copenhagen,2100 Copenhagen0, Denmark

Received19 September1988

A collection of proceduresable to perform algebraicmanipulationsfor theorthonormalizationand for thecalculationof
matrix elementsbetweenthe statesassociatedwith the U(S)~ 0(5) D 0(3) chain of groupsis presented.Theseprocedures
combineboth the exact- and thebigfloat-arithmeticmodesand thus returnarbitrarily accurateresults; this is particularly
relevantto theGram—Schmidtorthonormalization,wherestrong cancellationsusually poseseriousproblemsin all floating-
point implementations.

PROGRAM SUMMARY

Title ofprogram: PHIMANIP with the U(S)D 0(5) ~ 0(3)chainof groupsarewidelyusedto
describepropertiesof nuclei,both within theframework of the

Cataloguenumber:ABJA interactingbosonapproximationand of thegeometriccollec-
tive modelsof theFrankfurtgroup.Among themanyprocesses

Program obtainable from: CPC Program Library, Queen’s and propertiesthis chain hasbeenapplied to, prominentare
Universityof Belfast, N. Ireland (seeapplicationform in this the low-energy nuclear spectra, Coulomb excitation and
issue) medium-energyproton scattering,andthe photoabsorptionof

the giant dipole resonancein deformednuclei.
Computer:VAX 8650

Methodof solution
OperatingSystem:VMS Version4.7 Implementationof Gram—Schmidtorthonormali.zationin ex-

act arithmetic upon the wave functions generatedby the
Programminglanguagesused: REDUCE programPHISYM [1]. Direct calculation of matrix elements

[2,3] by implementationof relevantintegrationsover the $-
High speeastorage required: dependson the problem, mini- and y-degreesof freedomthroughthe useof algebraicrecur-
mum 0.5 Mbytes rencerelationsandwith thehelpof LET rules.

No. of bits in a word: 32 Restrictionson thecomplexityof theproblem
The available computer memory in combination with the

No. of lines in combinedprogram andtest deck: 665 automatic spaceallocationsof REDUCE is the most severe
restriction. This situation may be alleviated by splitting the

Keywords: U(5) ~ 0(5) ~ 0(3) chain of groups, interacting calculationinto severalsmaller steps.
boson approximation, geometricalcollective model, five-di-
mensionalharmonicoscillator, quadrupolevibrations of the Typicalrunning time
nucleus, wave functions for y-degree of freedom, This dependsstrongly on the complexity of theproblemand
Gram—Schmidtorthonormalization,matrix elementsin the $, cannotbeestimatedin advance.
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LONG WRITE-UP

1. Introduction by offering REDUCE proceduresthat orthonor-
malizethesestateswith respectto all indices and,

In a previouspaper[1] (hereafterreferredto as subsequently,calculate matrix elementsbetween
paperI), we presenteda REDUCE programthat them. This orthonormalizationof the basis states
calculates algebraically the y-dependentpart of is a prerequisitefor the evaluationof the matrix
the statesassociatedwith the U(S) ~ 0(5) ~ 0(3) elementsthat appearin the many physical appli-
chain of groups. These states form a complete cations [2,3,8,11—131.As will be elaboratedlater,
basisthat spans[2] the five-dimensionalspacefor thesematrix elementsare expressedas a product
quadrupoledeformationsof a nucleusor the space of two integrals, one over the radial variable ~8
for a nuclear Hamiltonian in the IBA model [3] and the secondover the angular variable y. We
built out of d bosons. will presentREDUCE proceduresfor the calcula-

Given the usefulnessof this chain*, consider- tion of bothintegrals.
ableeffort within the frameworkof group theory Theseproceduresare groupedin one program
hasbeeninvestedin providing analytic specifica- under the name PHIMANIP. The program
tions of the statesassociatedwith it. In fact, four PHIMANIP, in conjunction with the program
ratherlengthy papers[4—7]that offer closedana- PHISYM, forms a powerful tool offering an easy
lytic resultsare now available.Yet, thesestates,as accessto many complicatedaspectsof nuclear
presentedin refs. [4—7],are not normalizedand structure and of the physics of rotating nuclei.
not orthogonalin somequantumnumbers.More Special care has been taken that the program
important, in spite of their analytic form, the PHIMANIP is user-friendly,namely,the userdoes
y-dependentpart of thesestatesinvolves a pro- not need to have extensive knowledge of RE-
hibitive degreeof algebraicmanipulationswhich DUCE in order to use it; most of the necessary
cannotbe carriedout by hand. additionalREDUCE statementsare built in with

Until now, numerical computation has been specialauxiliary procedures.
used[3,8]in the handlingof thesestates,but such Apart from the easyaccessibilityto the subject
an approachneutralizesmany of the advantages of the U(S) D 0(5) ~ 0(3) chain of groups, a
of the algebraicgroup theoreticalmethod. For- central advantageof the presentalgebraic pro-
tunately, the recently introduced symbolic and gramsis the possibility of choosingbetweenexact
algebraic codes like REDUCE [9] and MAC- and arbitrary floating-point-precisionarithmetic
SYMA [10] offer a powerful tool for the algebraic provided by the REDUCE system, a fact that
handlingof suchsituations, drasticallyenhancesthe accuracyof the calcula-

PaperI presentedthe first step in a research tions. This exact arithmeticis particularly crucial
program aiming at using computer-assistedalge- [14] for the Gram—Schmidt orthonormalization
bra for handling the ‘y-dependentpart - denoted method that appearsas a necessarystep in the
by ~iy) - of the states associatedwith the handling [11,12] of the 4~’~(y)’s.
U(S) i 0(5) ~ 0(3) chain of groups. Specifically, Theplan of the presentpaperis as follows:
paper I presenteda REDUCE program- called 1. Section 2 summarizesthe Gram—Schmidtor-
PHISYM - that calculatesthis part by a direct thonormalization method as adopted to the
implementationof the analytic expressionsde- presentcase;it also describesthe relevantma-
rived by ChacónandMosbinsky * * [6]. The pur- trix elementsthat appearin physical applica-
poseof the presentpaperis to completethis effort tions, as well as some auxiliary mathematical

steps;
2. Section 3 describes the different procedures

necessary for an integral algebraicmanipula-
* For a completedescnptionof its physicalsignificance,see

theintroductionin paperI. non of the statesof the U(S) ~ 0(5) ~ 0(3)
* * Fora concisedescriptionof theseexpressions,see paperI. chainof groups;
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3. Section4 describeshow to usetheseprocedures In eq. (1), the indices N and n~are connected
andofferstypical examples; through the relation N = 2n~+ A, while in eq. (2)

4. Finally, Section 5 provides a discussionon ic = Mo/h, where o~is the frequencyof the oscil-
futureperspectives. lator and M an appropriateinertial parameter.

Unlike paper I, explicit care has been taken
here to display the normalizationconstants.The

2. Mathematical background overlapof two kets like eq. (1) involvesa five-di-
mensional integration over the two intrinsic de-

The states associatedwith the chain U(S) ~ greesof freedom, /3 and -y, and the three Euler
0(5) ~ 0(3) are the eigenstatesof the five-dimen- angles.Thecontributionof /3 to the normalization
sional harmonic oscillator. The labeling of these constantis the squareroot in eq. (2); the corre-
statesis donethroughfive quantumnumbers{ N, spondingcontributionof the integrationover the
A, ~t, L, M }. Specifically, N gives the numberof Euler angles, which involves the integral of two
phononspresentin the correspondingstate; A is rotation matrices [16], is given by {(2L + 1)/
referredto asthe seniority andreflectsthe number (8 ~ 2) }1/2 Thepart thatcorrespondsto thegamma
of phononswhich do not contributeto pairs cou- integrationis denotedby C~andis givenby
pled to angularmomentumzero. L and M are the
quantum numbersfor the total angular momen- -2 = ~ 2k~LyI2 sin(3y) dy
turn and its projection in the laboratory frame, 0 K�O (1 + ~Ko)

respectively.The fifth quantumnumber,denoted
_~yA~ (3)

here by ~.t, is related to the numberof phonon L

tripletscoupledto momentumzero. It shouldbe noticed that the normalizationcon-

stantin eq.(3) involvesthe traceover the intrinsic
2.1. Orthonormalization angular-momentumprojectionsK.

The kets in eq. (1) are orthogonalin the four
It turns out that a convenientway of spanning indices { N, A, L, M }. However, they are not

the coordinate space for the five-dimensional
necessarilyorthogonalin the index ~t; this, as will

harmonicoscillator is to considerthe threeEuler
be laterelaborated,canbe easily checkedwith the

angles9~,i = 1, 2, 3 andthe two intrinsic /3 and y
shapevariables[15,6]. The correspondingeigen- presentcode. Specifically, the nonorthogonalityoccurswhen different values of p. correspondto
statesare written as

the samevalueof A, namely,whendegeneraciesin
I NAp.LM> energywith respectto j.t appear,sinceN = 2n~+ A.

2L + 1 The relationof A to j.t is given by
=Fn~($)I 8~2 c~~ ~X~L(y)

K�0 ~L�A—3
1.t�L, whenLiseven, (4)

[DK(o~)+(—)”D~K(oI)] andby
x (1)

(1+8Ko) ~(L+3)�A—3p.�L, whenLisodd. (5)

where Dk~K are the usual rotation matrices[16] There are no p.-degeneraciesfor the first few
and the /3-dependentpart, .l~($),is expressed angularmomentaL = 0, 2, 3, 4, 5 and L = 7 (but
through associatedLaguerre polynomials [6] as not for L = 6). Therangeof angularmomentathat
follows:

correspondsto a given maximump.-degeneracy
A — [ 2n~!.c’~

5”2 1/2 canbe determinedby the relation [11]
— (n~+ A + 3/2)!] 6(flp.d~~— 1) L � (6(flp.drnax— 1) + 5). (6)

where flp.dm~
5denotesthe maximum p.-degener-

x$AL~
3/2(K$2)e~2/2. (2) acy. For example, for momenta 12 � L � 17 a



318 C. Yannouleasandf.M. Pacheco/ U(5) ~ 0(5) D 0(3) chainofgroups

maximum of threebasis stateshaveto be ortho- where the operatorT~PL(/3,y, 9.) is given by
gonalized.

We adopt the Gram—Schmidtmethod to the T~L($, y 9.) = ~L(y)D~*~(9) (10)
K

problemof orthonormalizingthekets I NAp.LM)

of eq. (1). In thepresentcase,this methodamounts Notice that, in this subsection,the indices K
to the following: Assumethat the first 1, 2,..., i will be free to run overbothpositiveandnegative
kets are alreadyorthogonalizedand denotedby a values. This is equivalent to restricting them to
tilde overthem,while the restof thekets, i + 1,..., nonnegativevalues, becauseof the symmetry
are not. Also assumethat their norms, ..IV’J~,are propertiesof the ~fL~~y)~s,namely
available.Thenthe ~X~iL(l±l)L(y)~s that correspond
to the orthogonal,but asyet unnormalized,(i + 1)- ~~‘~y) = (_)L~LL(y)~ (11)
ket are given by the expression This symmetry property is automatically taken

~X~,(L(i+1)L(y) into accountby the programPHISYM.
After the integrationover the Euler angleshas

= ~Afi+l)L(y) — ~ ~X~I(J)L(~) beencarriedout, the matrix elementof eq. (9) is

j=1 expressedas theproductof two integrals,oneover
/3 and the otherover y, namely

x(A, p.(j), LIA, p.(i+1), L)/~~’~.
/ ,, ,, ,,

(7) ~N A p. L ~ y

In eq. (7), (... I ...) denotesthe y-overlap of two N’A’p.’L’M’)
kets, N’A’p.’LM) and IN”A”p.”LM), and is given = (A’ n,~A”, n~2p + A)beta

by

(A’, p.’, LI A”, p.”, L)
X <L, L”, M, —M” IL’, —M’)

2~’L(y)~’~”L(y)sin(3y) dy. x(Ap.L; A’p.’L’; A”p.”L”), (12)

0 K~O (1+~Ko) wherethe integralover/3 is given by
(8)

(A’, n~A”, n~2P+A)bt
Of course, before applying eq. (7) to the next

step (i + 2), the norm of the function ~Xl2(:+1)L(y)

mustbe evaluatedaccordingto eq. (3). = 10 fl$() ~~() d$, (13)
while the integralover y is given by

2.2. Matrix elements
(Ap.L; A’p.’L’; A”p.”L”)

The implementation of the Gram—Schmidt
methoddescribedin the previoussubsectionyields = ~ ()L~’<L~ L’, K, K’ IL”, —K”)
a completeandorthonormal basisof stateshaving
the form of eq. (1), butwith the untilded4~’~(y)’s ><f ~izL(y) ~‘L’(y)~x;’P”L”(y) sin(3y) dy.
replacedby the tilded 4~’~(y )‘s. Thenext natural 0

step is the calculationof matrix elementsbetween (14)
thesestates.In the different physicalapplications,
the mostgeneralmatrix element [6] that can ap- In eqs. (12) and (14), the symbol K... I ...)

pearhasthe form standsfor the usualClebsch—Gordancoefficients
[16]. The quantity defined by eq. (14) plays the

/ ,, ,,

N A p. L”M”~$2~T~’~($,y, 9,) role of the reducedWignercoefficient(RWC) (3j
symbol) for the 0(5) D 0(3) chain of groups, as

(9) discussedin ref. [6].
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It shouldbe noticedthat for A = 0, p. = 0, L = 0 as well as anotherprocedurethat evaluatesdi-
and L’ = L” the RWCof eq. (14) reduces pre- rectly the matrix elementsof $

2~3mcosm(3y).

cisely to the y-overlap of two functions as given
by eq. (8). This is the reason why we use for its 2.3. Auxiliary steps
definition the usual Clebsch—Gordan coefficients
<... I ...), instead of the usual 3j symbol as in ref.
[6]. In this last case, an extra factor of 1/V~iT~- 1 As produced by the program PHISYM, the

wave functions l4Hy) are trigonometric poly-
would have appeared. nomials of sin( y) and cos( y), where the powers of

It should also be noticed that the integralover
beta (eq. (13)) scales with the harmonic oscillator cos(y) are limited to one and zero. For the alge-
constant,~as K_(2p±X)/2 braic integration over the variable y, it is then

sufficient to expandthe sin(3y) andthe additionalThere are selectionrules for the integral (13)
and the RWC(14). In particular, the selection cos(3y)’s and to implement the following three

definite integrals [17]:rules for the reducedWigner coefficient(14) are

IL — L” I � L’ � L + L” (15) fsin2m(y) ~ = (2m —1)!!
0 2mm! IT, (19)

for the angular momenta (resulting from the
2m.~lm!

Clebsch—Gordan coefficients), and J sin~’~+1( y) dy = (20)
A+A’+A”=even, IA—A”I�A’�A+A” (16) 0 (2m+1)!!

for the seniorities[11]. and
For the matrix element over beta (eq. (13)) we

consider the standard case of a power being an f sinm(y) cos(y)dy = 0, for any integer m.
0

integer of the form 2p + A with p � 0. Then, in the (21)
case with A + A’ + A” = even, namely when the
corresponding integral over gamma may be non- With respect to the integral over /3 (eq. (13)), a
vanishing, the following selection rule applies [h1~~ fast and elegantalgebraictechniquecan be used

2(n~— n,~
3’)+ (A’ — A”) � 2~+ A. (17) for the standard case when p � 0. In this case,

with x = sc/3
2 the following two recurrencerela-

In many frequent physical applications [2,8,13], tions [18,19] for the associated Laguerre poly-
one expands the potential energy surface of a nomials can be utilized to equalize the left { n~,
deformed nucleus or some IBA-type hamiltonian A’ } and right (n

3’, A” } indices,namely
as a polynomial in powersof cos(3y), insteadof
using the general operators T~L($, y, 9,). Al- L~(x)= L~

1(x)— L~t.~(x) (22)
though the powers of cos(3y) canbe expressedas
a linear combination of 4~j~’°(y)’s - since in this and
case the ~‘s are proportional to the Legendre xL~(x)= (2m + a + 1)L~(x)
polynomials of degree p., namely P~(cos(3y))

- we prefer to present a separate proce- — (m+

dure that directly evaluatesthe matrix elementsof
cosm(3y), namely — (m + 1)L~~

1(x). (23)
(A’, p.’, L cosm(3y) IA”, p.”, L) = Then, one implements the orthonormalization

relation [19] for the associatedLaguerrepolynomi-.

24~’L(y)4’~”~~(y) als, namely

0 K�0 (1+8Ko) x)= (m+a)!6 (24)( exaL~(x)L~(
xcosm(3y) sin(3y) dy, (18) Jo m!
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3. Description of symbolic program ACT or BFLOAT. This allows the userto decide,
at any stage, whether the procedure should per-

The proceduresand operatorsincluded in the form the calculationin exactor in bigfloat arith-
pr-ogram.P-HIMANIP are summarized-in~ahle-1 -metiG~ The bigfloat option is advantageous in the
and table 2, their names being listed in column 1. common situation where the norms are very large
Theseproceduresare divided into two categories, numbers,sincethe REDUCE simplification of the
namely auxiliary (table 1) and main-purpose (ta- corresponding square roots is very tedious in exact
ble 2) procedures.Table 1 also lists three proce- arithmetic. Special care has been taken so that the
dures already available in the program PHISYM, bigfloat option is activated only immediately be-
but which are indispensable for the running of the fore the calculationof theselarge squareroots. In
program PHIMANIP. These three procedures this way, the tracing over the intrinsic projections
provide the initial wave functions y) (PHI’s), K is always done in exact arithmetic, a fact that
the conversion of trigonometric expressions of guarantees high accuracy (see section 3.6).
sin(3y) and cos(3y) into powers of sin( y) and The precision with which bigfloat calculations
cos(y) and the usual Clebsch—Gordan coeffi- are performed can be entered or changed at any
cients. Column 2 lists the arguments of each pro- stage simply by typing “PRECISION v” after the
cedure, whereas column 3 offers a brief descrip- prompt; the default value is 16, corresponding to
tion of the corresponding function. REAL* 8 in Fortran. Whenexiting, all procedures

Notice that the functions 4~’(y) must be in the program PHIMANIP leave the REDUCE
calculated initially with the procedure PHI environmentswitchedon in exactarithmetic.
(LAMBDA, MU, L, K), but subsequentlythey The proceduresthat have FLAG as an argu-
must be stored as a special subscribed operator ment are the following five: ME, MEG, MEB,
APHI(LAMBDA, MU, L, K). MECOS, and MEGCOS.

All procedures that are designed to evaluate From the point of view of their function, all the
matrix elements always return a valuecorrespond- proceduresand operatorsare grouped into three
ing to properly normalized wave functions different trees (cf. fig. 1). However, each proce-
qj~LL(y) These proceduresare easily distinguisha- dure and eachoperator can be called indepen-
ble since they have FLAG as a first argument. dently according to the user’s needs.
This argument can take two values, namely EX- On top of the usual REDUCEmessages [9], a

Table 1
Auxiliary proceduresandoperatorsandpreviousprocedures

Arguments Brief description

Auxiliary procedures:

CHECKAPHI (LAMBDA,MU,L) Checksavailability ofAPHI’s
MKAPHI (LAMBDA,MU,L) ConstructswavefunctionsAPHI’s for all permittedvaluesof K
CLEARAPHI (LAMBDA,MU,L) DeleteswavefunctionsAPHI’s

Previousprocedures:

PHI (LAMBDA,MU,L,K) CalculateswavefunctionsPHI’s
CONV (exp) Expandssin(3y)andcos(3y)in powersof cos(y)andsin(y)
CG (L1,L2,L3,M1,M2,M3) ReturnsusualClebsch—Gordancoefficients

Auxiliary operators:

DEFINT (exp) Performsthedefiniteintegrationof sin”’(y) cos”(y), n = 0 or 1, eqs.(19—21)
HU (lagp(m,a)) Implementsrecurrencerelation (22)for associatedLaguerrepolynomial, L~
FX (lagp(m, a)) Implementsrecurrencerelation (23)for associated

Laguerrepolynomial, L~,
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Table 2a
Main-purposeprocedures

Main-purposeprocedures Arguments Brief description

GS (LAMBDA,L) PerformstheGram-Schmidtorthonormalizationof
APHI’s for given LAMBDAand L

NORMAPHI (LAMBDA,MU,L) Calculates the norm of APHI’s

GAMMAOVERLAP (LAMBDA1,MU1 Returns the gammaoverlap for two
LAMBDA2,MU2,L) APHI’s with thesame L, eq. (8)

ME (FLAG, Returns the complete matrix element of fl2~ T~’f/3, ~19~)
N1,LAMBDA1,MU1,L1,M1, in eq. (12), N2 = p, p � 0 TJ~~L 2
N2,LAMBDA2,MU2,L2,M2
N3,LAMBDA3,MU3,L3,M3)

MEG (FLAG, Returns the Euler-angles plus the gamma
LAMBDA1,MU1,L1,M1, contribution to the matrix element of eq. (12)
LAMBDA2,MU2,L2,M2, (RWCXClebsch-GordanXphase),TI~/~L 2
LAMBDA3,MU3,L3,M3)

RWC (LAMBDA1,MU1,L1, ReturnsthereducedWignercoefficient for the
LAMBDA2,MU2,L2, chain0(5) D 0(3), eq. (14), A, j~,L =~1
LAMBDA3,MU3,L3)

TRIPLINT (LAMBDA1,MU1,L1,K1, Returnstheintegralof threegiven
LAMBDA2,MU2,L2,K2, It~~L(y)~sappearingin RWC
LAMBDA3,MU3,L3,K3)

MEB (FLAG, Returnstheintegralover beta,eq. (13),
LAMBDA1,NBETA1, = 1, POWER= 2p + A, p � 0
LAMBDA2,NBETA2,POWER)

MECOS (FLAG, Returnsthe matrixelementof ~ POWERB [cos(3-y)] POWERG

N1,LAMBDA1,MU1,L1,M1, betweentwo kets(cf. eq.(1)),
N2,LAMBDA2,MU2,L2,M2, POWERB=2 xRHO + 3 xPOWERG
RHO,POWERG)

MEGCOS (FLAG, Returnsthematrixelementof [cos(3y)]”°’~’~, eq. (18),
LAMBDA1,MU1,LAMBDA2, POWER� 0
MU2,L,POWER)

number of informational and warning messages, In the following, we will describein detail the
as well as error messages, are built-in in the pro- particulars for each procedure. In addition, al-
gram PHIMANIP. To suppressthe former mes- thoughthe extramessagesin the presentprogram
sages, the user needs only to type “FLAGMSG: are self-explanatory when appearing during the
= MSGOFF” after the prompt. To reactivate execution of a specific procedure, we present a full
them, it is enough to type “FLAGMSG: = listing of them so that the user can easily dis-
MSGON”. The error messages, however, are built tinguish between them and the usual REDUCE
with the REDUCE statement“REDERR” and messages.
cannot be suppressed.

3.1. Auxiliary procedures

Table2b CHECKAPHI — This procedure, built-in in

almost all the main procedures, returns an error
FLAG EXACT or BFLOAT messagein the casewhenthe requiredwave func-

1 left indices tions APHI are not available yet. If the APHI’s
2 indicesin themiddle or right indices have been calculated previously, it returns a warn-
3 nght mdices

ing messageto that effect.
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NORMAPHI — GAMMAOVERLAP —~ CONy—.- DEFINT

CS GAMMAOVERLAP— CONV—.- DEFINT

TREE 1

CC

MEG CG

ME RWC

MEB HU TRIPLINT CONV - DEFINT

FX

TREE 2

MEGCOS CONV DEFINT

MECOS HU

MEB

FX

TREE 3

Fig. 1.

MKAPHI — By calling the procedure PHI of CONV— This procedure converts the trigono-
the program PHISYM, it creates the wave func- metric functions obtainable through this program
tions APHI for all permitted intrinsic projections (as well as through the program PHISYM) into a
K that correspond to given values of (LAMBDA, polynomialin powersof sin( 1) multiplied at most
MU, L). If the APHI’s are already available, by a first power of cos(y). This procedure is
MKAPHI doesnot call the procedurePHI again; instrumentalin the sensethat it enablesone to
instead, it simply displays the APHI’s. restrict the range of integration formulas in the

CLEARAPHI — It is used to delete existing operator DEFINT to the three cases given by eqs.
APHI’s, if the user so wishes. (19)—(21).

CG — It calculates the standard Clebsch—
3.2. Previousprocedures Gordan coefficients of 0(3).

PHI — This is the top-level procedure from the 3.3. Auxiliary operators
program PHISYM. This procedure returns the
initial wave functions 4~L((y) that are unnormal- DEFINT — This operator performs definite
ized and nonorthogonal in some indices p.. It is integration of expressions which are linear combi-
called by the procedure MKAPHI. nations of integrals of trigonometric functions of
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the form exhibited in eqs. (19)—(21). It is con- cedure. This is due to the fact that the y-overlap
structedas a linear operator. DEFINT is always of two ket states with different values of L is
applied to an integrand which has been converted always zero (cf. the Glebsch-Gordan coefficient in
previously through the application of the proce- eq. (12)). However, the selection rules for the
dure CONy. A group of LET rules allows the seniorities (eq. (16)) are not built in this proce-
mere substitution of the integrands in the l.h.s. of dure. This allows for an additional check concern-
eqs.(19)_(21)by the integrationresult in the r.h.s. ing the orthogonality with respect to different

HU — It implements recurrence relation (22) seniorities (cf. section 2.1).
for the associated Laguerre polynomials. It is con- ME — This procedure evaluates the complete
structedasa linear operatorwhich canbe applied matrix elementbetweentwo kets in eq. (12). It is
recursively. The substitutionsinvolved are imple- the top level procedureof the Tree 2 in fig. 1. It
mented by a LET rule. The associated Laguerre checks first the selection rules for gamma(cf. eqs.
polynomial in its argumentmust be denoted as (15)—(16)). If successful,it proceedsto evaluate
“lagp(m, a)”. the /3-part by calling MEB. If the /3-result is

FX — It implementsrecurrencerelation(23) for nonzero, it calls CHECKAPHI to determine
the associated Laguerre polynomials. Like HU, it whether the necessary wave functions APHI are
is constructedas a linear operatorwhich can be availableand proceedsto evaluatethe y-part of
applied recursively. The associated Laguerre poly- the matrix element by calling MEG. As displayed
nomial in its argument must also be denoted as in Tree 2, this procedure consists basically of the
“lagp(m, a)”. selection rules and the subsequent decisions on

whether to call MEGand MEB.
3.4. Main procedures MEG— Calculates the Euler-angles part plus

GS — It performs the Gram—Schmidt orthonor- y-part in ME. It consists essentially of the reduced
malization according to subsection 2.1, eqs. (7), Wigner coefficient (RWC) of 0(5) D 0(3) multi-
(8) and (3). If there are no p.-degeneracies, this plied by a usual Clebsch—Gordan coefficient and
proceduresimply calls NORMAPHI, whereasin a phase(seeeq. (12)). Here the intermediateresult
the opposite case eq. (7) is implemented using the is divided by the square root of the product of the
proceduresdisplayedin the Tree 1 of fig. 1. Prior normsfor APHI1 andAPHI3, so that the matrix

to calling any other procedure, GS determines elements ME and MEG correspond to properly
how many (if any) p.-degeneraciesexist for the normalized states.
requiredvalues of the pair (LAMBDA, L), and RWC — Evaluatesthe reducedWignercoeffi-
informs the user about that effect. Upon exit, the cient of 0(5) ~ 0(3) given in eq. (14). Since this
contents of the operator APHI have been over- equation involves a linear combination of prod-
written with the orthogonalizedexpressionswhile ucts of threewave functions APHI, only the dif-
the corresponding norms have been stored in the ferent coefficients are determined in the present
operatorNORM(LAMBDA, MU, L). procedure,leaving the y-integrationof the three

NORMAPHI — It calculates,with respect to APHI’s for the procedureTRIPLINT (seeTree2).
the y-variable,the norm of APHI’s, eq. (3). This is Unlike MEG, the division with the corresponding
achieved (see Tree 1) by calling GAMMAO- norms is not enforcedhere.If the userwishes to
VERLAP, which evaluates eq. (8) for A’ = A” = A calculate the RWCfor normalized APHI’s, he
and p.’ = p.” = p.. Upon exit, the norm has been must implement this division through an ad-
stored in the operator NORM(LAMBDA, MU, ditional, but simple REDUCEstatement.
L). TRIPLINT — For eachterm in the triple sum-

GAMMAOVERLAP — It evaluateseq. (8). It mation over the intrinsic projectionsK, K’, K”
calls CONYbefore applying operator DEFINT in eq. (14) for which the corresponding
which performs the final definite integrations. It Clebsch—Gordan coefficient is nonzero, TRI-
shouldbe notedthat thereis only onevalueL for PLINT performs the y-integrationof theproduct
the angular momenta as an argument to this pro- of three unnormalizedwave functionsAPHI. This
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step is donein a way quite analogousto GAM- 3.5. Messages
MAOVERLAP, namelyprocedureCONY is first
used and then the operator DEFINT is called. 3.5.1. Error messages

MEB — This procedurecalculatesthe /3-integral (* * * * * aphi’s( , , , ) not available
correspondingto eq. (13) for K = 1 (see eq. (2)). * * * * * the otherK’s are probablymissing);
The selectionrule (17) is first verified. As pointed * * * * * the first argumentmustbeBFLOAT or
out in subsection2.3, the integrationoverbetais EXACT;
accomplishedby utilizing the recurrencerelations (* * * * * the combinationL =, , lambda=,

(22) and (23) in order to transform the initial * * * * * is not possible);
/3-matrix element into a linear combination of * * * * * N is different from 2 * NBETA +

orthonormalizationintegrals for the associated LAMBDA or NBETA <0;
Laguerre polynomials (cf. eq. (24)). For most * * * * * presentalgebraicmethod is unapplica-
physical purposes,it is sufficient to restrict the ble;
power p in eq. (9) to be a non-negative integer. * * * * * (lambdal + lambda2 + power) is an
Thisis assumedthroughoutthis paper.Themethod odd integer.
adopted for the integration over the /3-variable In addition to the aboveerror messagesthat
fails when p is a negativeinteger. In this particu- correspondto the programPHIMANIP, the fol-
lar case,an error messagewill be displayed,stat- lowing four error messagesare built-in in the
ing that the presentalgebraictechniqueis unable programPHISYM:
to deal with such integrals. * * * * * Case for L = 1 does no exist;

MECOS — This procedureis the top level pro- * * * * * requiredprojectionK doesnotexist;
cedurein the Tree 3 of fig. 1. It returnsthe matrix * * * * * (lambda — 3 * mu) < L/2 .or. (lambda
element of /3P0wERBc

05(3y)P0wERG between two — 3 * mu)> L;
kets specified by eq. (1), where POWERB= 2 x * * * * * (lambda— 3 * mu) < (L + 3)/2 .or.
RHO + 3 X POWERG. It first checks the selec- (lambda— 3 * mu)> L.
lion rules for gamma (see next procedure).If
successful,it calls MEB in order to evaluatethe 3.5.2. Informationaland warning messages
/3-part (see Tree 3); if the /3-part is nonzero, it * * * done;
proceedsto call MEGCOSin order to evaluatethe * * * aphi’s ( , , ) areavailable;
y-part. * * * numberof degeneratestates:;

MEGCOS— Thisprocedurehas structureanal- * * * valuesof different possiblemu’s:;
ogousto GAMMAOVERLAP, but with the ad- * * * no mu-degeneracy;
ditional feature of a cos(3y) raisedto a natural * * * WARNING: aphi’s shouldhavebeenGS’
power“sandwiched” betweenthe two wave func- ed;
lions APHI (cf. eq. (18)). The selectionrules for * * WARNING: aphil andaphi3 shouldhave
thesematrix elementsare taken into accountby beenGS’ ed.
considering all the possible degrees of the Legendre The last two warnings indicate that procedure
polynomials,appearingin the expansionof a given GS should have been called before calling the
cos

m(3y) (cf. Table 12.1 in ref. [19]). Since the presentprocedure.
Legendrepolynomialscorrespondto wave func- In addition to thesemessages,the results of
tions PHI for momentumzero, only stateswith ME and MECOS are displayed in a table form.
the samevalueof L will be coupledby cosm(3y); Apart from the completefinal result that is saved
therefore, we keep with the practice of GAM- in the correspondingREDUCE workspace,this
MAOVERLAP anduseonly one valueof L asan table displays the intermediateresults of MEB
argumentfor this procedure.As with MEG the (betaresult) and MEG (gammaresult). The sup-
final result correspondsto properly normalized pression and reactivation of this table display
~X/L(y)~s, since the division with the squareroot dependson the value of FLAGMSG described
of the normsof APHI’s is performedhere, earlier.
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3.6. Accuracyof calculations 4.2. Example2

In this example,we presentthe evaluationof aIn floating-point arithmetic, a straightforward
implementationof the Gram—Schmidtprocessis particular casefor the general matrix elementof
not advisable[14]. Indeed,extensivecancellations eq. (12). The T operatorhasbeenchosento agree
in the summationoverpositive andnegativecon- with (—cos(3y)).This correspondsto the poten-

tial-energy-surfaceterm which generatesthe pro-tributions appearas a rule in this case.The same late-oblate asymmetry [8,13] in the geometrical
problem,in floating-pointarithmetic, also appears model.The correspondingprocedureis ME.
in the calculationof the gammaoverlapof eq. (8)

Since the operator T was restricted to agree
for two different setof indicesA and p., since the
traceoverK is involved, with (—cos(3y)), the result of ME can also bereachedthrough the procedureMECOS.

This, however,does not constitutea problem
A completedescription of the different steps

for the algebraiccodes,sincethey useexactarith- and indices involved in this exampleis given in
metic.Indeed,as mentionedearlier,particularcare

the testrun output.
hasbeentaken in the writing of the programso
that the implementation of the Gram—Schmidt

4.3. Example3
methodis alwayscarriedefficiently in exactarith-
metic.

The purposeof this exampleis to illustrate the
autonomousfunctioning of eachprocedurein one
of the treesof fig. 1. The partial betaandgamma

4. How to use the program: Examples results displayed in the tables of the previous
exampleare reproducedby calling the procedures
MEB, MEG, and MEGCOS.

After calling the systemREDUCE, one needs The result of RWC agreeswith that of MEG
to input both the program PHISYM and the and MEGCOSwhen the division with the square
program PHIMANIP from previously prepared roots of the correspondingnorms is taken into
files. In the test run output, we will assumethat account.
these two files are named “phisym.red” and An examinationof the test run output allows
“phimanip.red”,respectively, for a direct comparisonbetween the indices in

Thefirst threeexamplesillustrate theuseof the these proceduresand in the proceduresof the
program in interactive mode, while the fourth previousexamples.
exampleillustratesthe useof theprogramin batch
mode. 4.4. Example4

This exampleshows how to use the programs

4.1. Example1 PHISYM and PHIMANIP in batch mode. The

warningmessageshavebeensuppressedandpreci-
This exampleshowsthe implementationof the sion 16 hasbeenchosento calculatetwo different

Gram—Schmidtorthonormalizationmethod (sec- casesby calling procedureMEGCOS.TheAPHI’s
tion 2.1). For angularmomentumL = 6, thereare used have beenorthonormalizedfirst by calling
two degeneratestateswhen A = 9 with p. = 1 and procedureGS.
p. = 2. Indeed,before the orthonormalization,the Notice that RES1 is accurateto 16 significant
gammaoverlapof thesetwo statesis different from digits. RES2 is exact, however, in spite of the
zero. After the calling of procedureGS, the gam- bigfloat option, since its vanishing is produced
maoverlapis preciselyzero. The full sequenceof through the tracing over the index K before the
the correspondinginput commandsis given in the bigfloat modeis activatedwhendividing with the
testrun output. squareroot of the norms.
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TEST RUN OUTPUT

REDUCE 3.3, 15—Jan—88 , ,, S **************** E x a m p 1 e 2 *************

1: in “phisym.red”$ 8: mkaphi(8,l,6);

2: in “phimanip.red”$ *** done

**************** E x a m p 1 e 1 ~~***~***~*** 9: mkaphi(3,l,0);

3: mkaphi(9,l,6); *** done

x** done 10: gs(8,6);

4: mkaphi(9,2,6); *** no mu—degeneracies

*** done *** value of mu: 1

5: gammaoverlap(9,1,9,2,6); *** aphi’s(8,l,6) are available

*** aphi’s(9,l,6) are available *** done

*** aphi’s(9,2,6) are available 11: me( exact, 13,9,1,6,6, 2,3,1,0,0, 10,8,1,6,6);

4416 *** aphi’s(9,l,6) are available

539 *** aphi’s(3,l,O) are available

6: gs(9,6); *** aphi’s(8,l,6) are available

*** number of degenerate states: 2 *** WARNING: aphil and aphi3 should have been GS’ ad

*** values of different possible mu’s:

1 *** RESULTS FOR ME( 13,9,1,6,6,

2 2,3,1,0,0,

*** aphi’s(9,1,6) are available 10,8,1,6,6)

*** aphi’s(9,2,6) are available diff. phi components for T(3,l,0,0):

*** done 2
COS(G)*(4*SIN(G) - 1)

7: gammaoverlap(9,l,9,2,6);
power of beta : 7

*** aphi’s(9,l,6) are available
14985*SORT(23)

*** aphi’s(9,2,6) are available beta result :
4*SQRT(2)

0
63*SQRT(2057)

S **************** End of example 1 ~ gamma result :
187*SQRT(16399)

complete result

944055*SQRT (2057)

748*SQRT( 1426)

12: mecos(exact, 13,9,1,6,6, 10,8,1,6,6, 2,1);

*** aphi’s(9,l,6) are available

*** aphi’s(8,1,6) are available

*** WARNING: aphi’s should have been GS’ ed
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*** RESULTS FOR MECDS( 13,9,1,6,6, 5 .**.********************* E x a m p 1 e 4 *******

10,8,1,6,6,
Sr rsys:reduce

2,1) off int;
off echo;

power of beta : 7
flagmsg: ~msgoff;

l4985*SQRT (23)
beta result : FLAGMSG :~ MSGOFF

4*SQRT(2)
in “phisym.red”S

63*SQRT(2057)
gamma result : in “phimanip.red”$

187*SQRT(16399)
mkaphi(Jl,7,lO)$

complete result : mkaphi(3l,8,lO)5
mkaphi(32,8,lO)$

944055*SQRT(2057) mkaphi(32 ,9, 10)S

748*SQRT(1426) gs(31,l0)$
gs(32,lO)$

S **************** End of example 2 *****************

precision 16;
S **************** E x a m p 1 e 3 *************

16
13: meb(exact, 9,2, 8,1, 7);

write resl:~megcos(bf1oat,3l,7,32,8,1O,1)$
14985*5QRT (23)

RESI :~0.015 72734 97917 0488
4*SQRT(2)

write res2:rmegcos(bfloat,31,7,32,9,lO,l)$
14: meg(exact, 9,1,6,6, 3,1,0,0, 8,1,6,6);

RES2 := 0
*** aphi’s(9,1,6) are available

S *********************** End of a x a m p 1 e 4 ****

*** aphi’s(3,l,O) are available

*** aphi’s(8,1,6) are available

*** WARNING: aphil and aphi3 should have been 65’ ed

63*SQRT(2057)

l87*5QRT (16399)

15: rwc(9,l,6, 3,1,0, 8,1,6 );

*** aphi’s(9,l,6) are available

*** aphi’s(3,1,0) are available

*** aphi’s(8,l,6) are available

97200

187

16: megcos(exact, 9,1, 8,1, 6,1);

*** aphi’s(9,l,6) are available

*** aphi’s(8,1,6) are available ~

*** WARNING: aphi’s should have been GS’ ed

63*SQRT(2057)

187*SQRT(16399)

~ *************** End of example 3 ******************


