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A collection of procedures able to perform algebraic manipulations for the orthonormalization and for the calculation of
matrix elements between the states associated with the U(5) D O(5) D O(3) chain of groups is presented. These procedures
combine both the exact- and the bigfloat-arithmetic modes and thus return arbitrarily accurate results; this is particularly
relevant to the Gram-Schmidt orthonormalization, where strong cancellations usually pose serious problems in all floating-

point implementations.

PROGRAM SUMMARY

Title of program: PHIMANIP
Catalogue number: ABJA

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this
issue)

Computer: VAX 8650
Operating System: VMS Version 4.7
Programming languages used: REDUCE

High speea storage required: depends on the problem, mini-
mum 0.5 Mbytes

No. of bits in a word: 32
No. of lines in combined program and test deck: 665

Keywords: U(5) 2 O(5) > O(3) chain of groups, interacting
boson approximation, geometrical collective model, five-di-
mensional harmonic oscillator, quadrupole vibrations of the
nucleus, wave functions for y-degree of freedom,
Gram-Schmidt orthonormalization, matrix elements in the 8,
v plane, exact arithmetic, bigfloat arithmetic, computer-as-
sisted algebra, REDUCE

Nature of physical problem
Group theoretical ideas and, in particular, states associated

! NATO fellow for the academic year 1987-88.
2 On leave of absence from University of Coimbra, Portugal.

with the U(5) D O(5) D O(3) chain of groups are widely used to
describe properties of nuclei, both within the framework of the
interacting boson approximation and of the geometric collec-
tive models of the Frankfurt group. Among the many processes
and properties this chain has been applied to, prominent are
the low-energy nuclear spectra, Coulomb excitation and
medium-energy proton scattering, and the photoabsorption of
the giant dipole resonance in deformed nuclei.

Method of solution

Implementation of Gram-Schmidt orthonormalization in ex-
act arithmetic upon the wave functions generated by the
program PHISYM [1]. Direct calculation of matrix elements
[2,3] by implementation of relevant integrations over the S-
and y-degrees of freedom through the use of algebraic recur-
rence relations and with the help of LET rules.

Restrictions on the complexity of the problem

The available computer memory in combination with the
automatic space allocations of REDUCE is the most severe
restriction. This situation may be alleviated by splitting the
calculation into several smaller steps.

Typical running time
This depends strongly on the complexity of the problem and
cannot be estimated in advance.
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LONG WRITE-UP
1. Introduction

In a previous paper [1] (hereafter referred to as
paper I), we presented a REDUCE program that
calculates algebraically the y-dependent part of
the states associated with the U(5) > O(5) D O(3)
chain of groups. These states form a complete
basis that spans [2] the five-dimensional space for
quadrupole deformations of a nucleus or the space
for a nuclear Hamiltonian in the IBA model [3]
built out of d bosons.

Given the usefulness of this chain*, consider-
able effort within the framework of group theory
has been invested in providing analytic specifica-
tions of the states associated with it. In fact, four
rather lengthy papers [4-7] that offer closed ana-
lytic results are now available. Yet, these states, as
presented in refs, [4-7], are not normalized and
not orthogonal in some quantum numbers. More
important, in spite of their analytic form, the
v-dependent part of these states involves a pro-
hibitive degree of algebraic manipulations which
cannot be carried out by hand.

Until now, numerical computation has been
used [3,8] in the handling of these states, but such
an approach neutralizes many of the advantages
of the algebraic group theoretical method. For-
tunately, the recently introduced symbolic and
algebraic codes like REDUCE [9] and MAC-
SYMA [10] offer a powerful tool for the algebraic
handling of such situations.

Paper 1 presented the first step in a research
program aiming at using computer-assisted alge-
bra for handling the y-dependent part - denoted
by ¢¥E(y) - of the states associated with the
U(5) D O(5) © O(3) chain of groups. Specifically,
paper 1 presented a REDUCE program - called
PHISYM - that calculates this part by a direct
implementation of the analytic expressions de-
rived by Chacon and Moshinsky ** [6]. The pur-
pose of the present paper is to complete this effort

* For a complete description of its physical significance, see
the introduction in paper 1.
** For a concise description of these expressions, see paper 1.

by offering REDUCE procedures that orthonor-
malize these states with respect to all indices and,
subsequently, calculate matrix elements between
them. This orthonormalization of the basis states
is a prerequisite for the evaluation of the matrix
elements that appear in the many physical appli-
cations [2,3,8,11-13]. As will be elaborated later,
these matrix elements are expressed as a product

of two integrals, one over the radial variable B

and the second over the angular variable y. We

will present REDUCE procedures for the calcula-
tion of both integrals.

These procedures are grouped in one program
under the name PHIMANIP. The program
PHIMANIP, in conjunction with the program
PHISYM, forms a powerful tool offering an easy
access to many complicated aspects of nuclear
structure and of the physics of rotating nuclei.
Special care has been taken that the program
PHIMANIP is user-friendly, namely, the user does
not need to have extensive knowledge of RE-
DUCE in order to use it; most of the necessary
additional REDUCE statements are built in with
special auxiliary procedures.

Apart from the easy accessibility to the subject
of the U(5)D>0O(5)>0(3) chain of groups, a
central advantage of the present algebraic pro-
grams is the possibility of choosing between exact
and arbitrary floating-point-precision arithmetic
provided by the REDUCE system, a fact that
drastically enhances the accuracy of the calcula-
tions. This exact arithmetic is particularly crucial
[14] for the Gram-Schmidt orthonormalization
method that appears as a necessary step in the
handling [11,12] of the ¢}**(y)’s.

The plan of the present paper is as follows:

1. Section 2 summarizes the Gram-Schmidt or-
thonormalization method as adopted to the
present case; it also describes the relevant ma-
trix elements that appear in physical applica-
tions, as well as some auxiliary mathematical
steps;

2. Section 3 describes the different procedures
necessary for an integral algebraic manipula-
tion of the states of the U(5) 2> O(5) > O(3)
chain of groups;
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3. Section 4 describes how to use these procedures
and offers typical examples;

4. Finally, Section 5 provides a discussion on
future perspectives.

2. Mathematical background

The states associated with the chain U(5) D>
O(5) D O(3) are the eigenstates of the five-dimen-
sional harmonic oscillator. The labeling of these
states is done through five quantum numbers { ¥,
A, p, L, M}. Specifically, N gives the number of
phonons present in the corresponding state; A is
referred to as the seniority and reflects the number
of phonons which do not contribute to pairs cou-
pled to angular momentum zero. L and M are the
quantum numbers for the total angular momen-
tum and its projection in the laboratory frame,
respectively. The fifth quantum number, denoted
here by p, is related to the number of phonon
triplets coupled to momentum zero.

2.1. Orthonormalization

It turns out that a convenient way of spanning
the coordinate space for the five-dimensional
harmonic oscillator is to consider the three Euler
angles 6,, i =1, 2, 3 and the two intrinsic 8 and y
shape variables [15,6]. The corresponding eigen-
states are written as

| NApLM)

- E)(B)\ BT T gt (v)

K=>0

L LDki(8) + ()" Dz (6)
(1 + 8¢0) ,

where D;* are the usual rotation matrices [16]
and the B-dependent part, E,i‘,(ﬁ), is expressed
through associated Laguerre polynomials [6] as
follows:

(1)

(ng+A+3/2)!

XBAL2:3/2 K,BZ) e "B /2 (2)

F,,?,(B)=[

2nB!K)\+5/2 l]/z

In eq. (1), the indices N and ng are connected
through the relation N =2nz+ A, while in eq. (2)
k = Mw/h, where o is the frequency of the oscil-
lator and M an appropriate inertial parameter.

Unlike paper I, explicit care has been taken
here to display the normalization constants. The
overlap of two kets like eq. (1) involves a five-di-
mensional integration over the two intrinsic de-
grees of freedom, 8 and vy, and the three Euler
angles. The contribution of 8 to the normalization
constant is the square root in eq. (2); the corre-
sponding contribution of the integration over the
Euler angles, which involves the integral of two
rotation matrices [16], is given by {(2L+1)/
(8m2)}!/2. The part that corresponds to the gamma
integration is denoted by C;** and is given by

_2 - [ girL 2 .
- 2 s
= (3)

It should be noticed that the normalization con-
stant in eq. (3) involves the trace over the intrinsic
angular-momentum projections K.

The kets in eq. (1) are orthogonal in the four
indices {N, A, L, M}. However, they are not
necessarily orthogonal in the index p; this, as will
be later elaborated, can be easily checked with the
present code. Specifically, the nonorthogonality
occurs when different values of p correspond to
the same value of A, namely, when degeneracies in
energy with respect to u appear, since N =2ng + A.
The relation of A to u is given by

sL<A—-3u<L, when L iseven, (4)
and by
S(L+3)<A—3u<L, when L is odd. (5)

There are no p-degeneracies for the first few
angular momenta L. =0, 2, 3,4, 5 and L =7 (but
not for L = 6). The range of angular momenta that
corresponds to a given maximum p-degeneracy
can be determined by the relation [11]

6(npd e —1) < L < (6(npd e —1)+5).  (6)

where npd,,, denotes the maximum p-degener-
acy. For example, for momenta 12 <L <17 a
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maximum of three basis states have to be ortho-
gonalized.

We adopt the Gram-Schmidt method to the
problem of orthonormalizing the kets | NAu LM )
of eq. (1). In the present case, this method amounts
to the following: Assume that the first 1, 2,...,i
kets are already orthogonalized and denoted by a
tilde over them, while the rest of the kets, i + 1,.. .,
are not. Also assume that their norms, 4 L"“, are
available. Then the ¢}** VL (y)'s that correspond
to the orthogonal, but as yet unnormalized, (i + 1)-
ket are given by the expression

5}]\(}1({+1)L(Y)

i
— )1\(;L(i+l)L(,Y) _ ¢>I\<Mj)L(Y)
=1

J
X(A, w(j)s LIN, p(i+1), L) /AP
(7)
In eq. (7), (... |...) denotes the y-overlap of two
kets, [IN'XN'p’LM) and |[N”\"p”LM), and is given
by

(A,, ‘U.,, LlAN, “//’ L)
T 286 ()M (y)

= sin(3y) dvy.
0 Kgo (1 + 81(0)

(8)

Of course, before applying eq. (7) to the next
step (i + 2), the norm of the function ¢+ DL (y)
must be evaluated according to eq. (3).

2.2. Matrix elements

The implementation of the Gram-Schmidt
method described in the previous subsection yields
a complete and orthonormal basis of states having
the form of eq. (1), but with the untilded ¢}*Z(y)’s
replaced by the tilded ¢}*“(y)’s. The next natural
step is the calculation of matrix elements between
these states. In the different physical applications,
the most general matrix element [6] that can ap-
pear has the form

<N//>\N“LNL//M// IB2p+)\TA>/};LL(B’ Y, 0})‘
N/}\’,U,’L,M’>, (9)

where the operator Ty;*%(8, v, 6,) is given by
Tt (B, v, 6,) = L &¥" (v) Dy’ (6,). (10)
K

Notice that, in this subsection, the indices K
will be free to run over both positive and negative
values. This is equivalent to restricting them to
nonnegative values, because of the symmetry
properties of the $}*L(y)’s, namely

() = (=) (). (11)

This symmetry property is automatically taken
into account by the program PHISYM.

After the integration over the Euler angles has
been carried out, the matrix element of eq. (9) is
expressed as the product of two integrals, one over
B and the other over v, namely

B> ATH(B, v, 6,)|
N’A’I",LIM/>
= (XN, ng; X7, ng; 2p+ )

X(_)L’+L”+M'+M”

<N”X',u"L"M"

beta

X{(L,L", M, —-M"|L, —M")
X(AHL, A,H,L/; A”‘U.”L”), (12)
where the integral over B8 is given by

(N, ng; X', ng; 20+A)

beta
o " ’
= [ EX(B)B*EY(B)B* dB, (13)
while the integral over y is given by
(A“L; AIMILI; Al’“’lL,/)

- ¥

(—)L_L,<L, L,, K, K/ |L”, __K//>

K,K',K”
><f0 SEE(Y) B L (7)) Fh# () sin(3y) dy.
(14)
In egs. (12) and (14), the symbol (... |...)

stands for the usual Clebsch—-Gordan coefficients
[16]. The quantity defined by eq. (14) plays the
role of the reduced Wigner coefficient (RWC) (3;
symbol) for the O(5) > O(3) chain of groups, as
discussed in ref. [6].
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It should be noticed that for A\=0, p=0, L=0
and L'=L" the RWC of eq. (14) reduces pre-
cisely to the y-overlap of two functions as given
by eq. (8). This is the reason why we use for its
definition the usual Clebsch—Gordan coefficients
{...]...), instead of the usual 3j symbol as in ref.
[6]- In thlS last case, an extra factor of 1/V2L"+ 1
would have appeared.

It should also be noticed that the integral over
beta (eq. (13)) scales with the harmonic oscillator
constant k as k~@PN/2,

There are selection rules for the integral (13)
and the RWC (14). In particular, the selection
rules for the reduced Wigner coefficient (14) are

|L—L"|<L <L+L" (15)

for the angular momenta (resulting from the
Clebsch—Gordan coefficients), and

A+N+N =even, [A-N'|<XN<A+X’ (16)

for the seniorities [11].

For the matrix element over beta (eq. (13)) we
consider the standard case of a power being an
integer of the form 2p + A with p > 0. Then, in the
case with A+A + )\’ =even, namely when the
corresponding integral over gamma may be non-
vanishing, the following selection rule applies [11]:

|2(nf— 1) + (X =X")

<2p+A. a7

In many frequent physical applications [2,8,13],
one expands the potential energy surface of a
deformed nucleus or some IBA-type hamiltonian
as a polynomial in powers of cos(3v), instead of
using the general operators T*X(8, v, 6,). Al-
though the powers of cos(3y) can be expressed as
a linear combination of ¢3**°(y)’s - since in this
case the ¢’s are proportional to the Legendre
polynomials of degree p, namely P, (cos(3y)) ~
é#*0(y) - we prefer to present a separate proce-
dure that directly evaluates the matrix elements of
cos™(3y), namely

(XN, ', Ljcos™(3y) X/, p”, L)=

[> 26K (V) ()
0 k=20 (1 + 8x)
X cos™(3v) sin(3y) dv, (18)

as well as another procedure that evaluates di-
rectly the matrix elements of 82°*3"cos™(3y).

2.3. Auxiliary steps

As produced by the program PHISYM, the
wave functions ¢}*“(y) are trigonometric poly-
nomials of sin(y) and cos(y), where the powers of
cos(y) are limited to one and zero. For the alge-
braic integration over the variable vy, it is then
sufficient to expand the sin(3y) and the additional
cos(3y)’s and to implement the following three
definite integrals [17]:

T m 2m—1)!!
fosm2 (v) dy=————( 2”’m!) m, (19)

o 2m+lm!
2m+1 d — 20
fosm (v) dy Gmr i (20)

and

/ sin”(y) cos(y) dy=0, for any integer m.
0
(21)

With respect to the integral over 8 (eq. (13)), a
fast and elegant algebraic technique can be used
for the standard case when p>0. In this case,
with x = kB2, the following two recurrence rela-
tions [18,19] for the associated Laguerre poly-
nomials can be utilized to equalize the left {ng,
X'} and right {ng, X”} indices, namely

Ly (x) = L '(x) = Ly "3 (x) (22)

and

xLy(x)=02m+a+1)L%(x)
—(m+a)L7_,(x)
—(m+1) L7 (x). (23)

Then, one implements the orthonormalization
relation [19] for the associated Laguerre polynomi-.
als, namely

fwe_xx"Lf‘,,(x)L,‘;‘(x) = (-mah—a_)J_S
0

m' mn*

(24)
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3. Description of symbolic program

The procedures and operators included in the
program-PHIMANIP are summarized-in table-1
and table 2, their names being listed in column 1.
These procedures are divided into two categories,
namely auxiliary (table 1) and main-purpose (ta-
ble 2) procedures. Table 1 also lists three proce-
dures already available in the program PHISYM,
but which are indispensable for the running of the
program PHIMANIP. These three procedures
provide the initial wave functions ¢}**(y) (PHI’s),
the conversion of trigonometric expressions of
sin(3y) and cos(3y) into powers of sin(y) and
cos(y) and the usual Clebsch—Gordan coeffi-
cients. Column 2 lists the arguments of each pro-
cedure, whereas column 3 offers a brief descrip-
tion of the corresponding function.

Notice that the functions ¢}*‘(y) must be
calculated initially with the procedure PHI
(LAMBDA, MU, L, K), but subsequently they
must be stored as a special subscribed operator
APHI(LAMBDA, MU, L, K).

All procedures that are designed to evaluate
matrix elements always return a value correspond-
ing to properly normalized wave functions

$L(v). These procedures are easily distinguisha-
ble since they have FLAG as a first argument.
This argument can take two values, namely EX-

Table 1
Auxiliary procedures and operators and previous procedures

ACT or BFLOAT. This allows the user to decide,
at any stage, whether the procedure should per-
form the calculatlon in exact or in blgﬂoat arith-

common situation where the norms are very large
numbers, since the REDUCE simplification of the
corresponding square roots is very tedious in exact
arithmetic. Special care has been taken so that the
bigfloat option is activated only immediately be-
fore the calculation of these large square roots. In
this way, the tracing over the intrinsic projections
K is always done in exact arithmetic, a fact that
guarantees high accuracy (see section 3.6).

The precision with which bigfloat calculations
are performed can be entered or changed at any
stage simply by typing “PRECISION v” after the
prompt; the default value is 16, corresponding to
REAL*8 in Fortran. When exiting, all procedures
in the program PHIMANIP leave the REDUCE
environment switched on in exact arithmetic.

The procedures that have FLAG as an argu-
ment are the following five: ME, MEG, MEB,
MECOS, and MEGCOS.

From the point of view of their function, all the
procedures and operators are grouped into three
different trees (cf. fig. 1). However, each proce-
dure and each operator can be called indepen-
dently according to the user’s needs.

On top of the usual REDUCE messages [9], a

Arguments Brief description
Auxiliary procedures:
CHECKAPHI (LAMBDA,MU,L) Checks availability of APHI’s
MKAPHI (LAMBDA,MU,L) Constructs wave functions APHI’s for all permitted values of K
CLEARAPHI (LAMBDA MU,L) Deletes wave functions APHI's
Previous procedures:
PHI (LAMBDA MU,L,K) Calculates wave functions PHI's
CONV (exp) Expands sin(3y) and cos(3y) in powers of cos(y) and sin(y)
CG (L1,L2,L3,M1,M2,M3) Returns usual Clebsch—Gordan coefficients
Auxiliary operators:
DEFINT (exp) Performs the definite integration of sin”(y) cos”(v), n =0 or 1, egs. (19-21)
HU (lagp(m, a)) Implements recurrence relation (22) for associated Laguerre polynomial, LJ,
FX (lagp(m, «)) Implements recurrence relation (23) for associated

Laguerre polynomial, L),
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Table 2a
Main-purpose procedures
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Main-purpose procedures Arguments Brief description
GS (LAMBDA,L) Performs the Gram-Schmidt orthonormalization of
APHT’s for given LAMBDA and L

NORMAPHI (LAMBDAMU,L) Calculates the norm of APHI's

GAMMAOVERLAP (LAMBDA1,MU1 Returns the gamma overlap for two
LAMBDA2 MU2L) APHI’s with the same L, eq. (8)

ME (FLAG, Returns the complete matrix element of 82° +)‘T,f}““‘(,(?, Y, 8;)
N1,LAMBDA1 MU1,L1 M1, ineq. (12, N2=p, p2 0 Tp*t =2
N2,LAMBDA2MU2,L2,M2
N3,LAMBDA3,MU3,L3,M3)

MEG (FLAG, Returns the Euler-angles plus the gamma
LAMBDA1,MU1,L1,M1, contribution to the matrix element of eq. (12)
LAMBDA2MU2,12,M2, (RWC x Clebsch—Gordan X phase), TH*L = 2
LAMBDA3 MU3,L3,M3)

RWC (LAMBDA1,MUL,L1, Returns the reduced Wigner coefficient for the
LAMBDA2MU2,L2, chain O(5) 2 O(3), eq. (14), A, p, L =1
LAMBDA3,MU3,L3)

TRIPLINT (LAMBDA1,MU1,L1,K1, Returns the integral of three given
LAMBDA2MU2,1.2 K2, NE(Y)s appearing in RWC
LAMBDA3 MU3,L3,K3)

MEB (FLAG, Returns the integral over beta, eq. (13),
LAMBDA1,NBETAL, k=1, POWER =2p+ A, p=0
LAMBDA2 NBETA2,POWER)

MECOS (FLAG, Returns the matrix element of 8 POWERB[cos(3y)] POWERG
N1,LAMBDA1,MU1,L1,M1, between two kets (cf. eq. (1)),
N2,LAMBDA2 MU2,L2 M2, POWERB = 2 X RHO + 3 X POWERG
RHO,POWERG)

MEGCOS (FLAG, Returns the matrix element of [cos(3y)}FOVER, eq. (18),
LAMBDA1,MU1,LAMBDAZ2, POWER = 0
MU2,L,POWER)

number of informational and warning messages,
as well as error messages, are built-in in the pro-
gram PHIMANIP. To suppress the former mes-
sages, the user needs only to type “FLAGMSG:
= MSGOFF” after the prompt. To reactivate
them, it is enough to type “FLAGMSG: =
MSGON”. The error messages, however, are built
with the REDUCE statement “REDERR” and
cannot be suppressed.

Table 2b

Note:

FLAG = EXACT or BFLOAT

1= left indices

2= indices in the middle or right indices
3= right indices

In the following, we will describe in detail the
particulars for each procedure. In addition, al-
though the extra messages in the present program
are self-explanatory when appearing during the
execution of a specific procedure, we present a full
listing of them so that the user can easily dis-
tinguish between them and the usual REDUCE
messages.

3.1. Auxiliary procedures

CHECKAPHI - This procedure, built-in in
almost all the main procedures, returns an error
message in the case when the required wave func-
tions APHI are not available yet. If the APHI’s
have been calculated previously, it returns a warn-
ing message to that effect.
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NORMAPHI —+ GAMMAOVERLAP ~— CONV-~——+ DEFINT

GS GAMMAOVERLAP —— CONV~—+ DEFINT
IREE]
CG
MEG
ME RWC
MEB Y HU TRIPLINT CONV DEFINT
FX
FREFE-2
MEGCOS — CONV — DEFINT
MECOS < HU
FX
TREE 3

MKAPHI - By calling the procedure PHI of
the program PHISYM, it creates the wave func-
tions APHI for all permitted intrinsic projections
K that correspond to given values of (LAMBDA,
MU, L). If the APHI’s are already available,
MKAPHI does not call the procedure PHI again;
instead, it simply displays the APHI’s.

CLEARAPHI - It is used to delete existing
APHT’s, if the user so wishes.

3.2. Previous procedures

PHI - This is the top-level procedure from the
program PHISYM. This procedure returns the
initial wave functions ¢}**(y) that are unnormal-
ized and nonorthogonal in some indices u. It is
called by the procedure MKAPHI.

CONYV - This procedure converts the trigono-
metric functions obtainable through this program
(as well as through the program PHISYM) into a
polynomial in powers of sin(y) multiplied at most
by a first power of cos(y). This procedure is
instrumental in the sense that it enables one to
restrict the range of integration formulas in the
operator DEFINT to the three cases given by egs.
(19)-(21).

CG - It calculates the standard Clebsch-
Gordan coefficients of O(3).

3.3. Auxiliary operators

DEFINT - This operator performs definite
integration of expressions which are linear combi-
nations of integrals of trigonometric functions of
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the form exhibited in egs. (19)-(21). It is con-
structed as a linear operator. DEFINT is always
applied to an integrand which has been converted
previously through the application of the proce-
dure CONV. A group of LET rules allows the
mere substitution of the integrands in the Lh.s. of
egs. (19)-(21) by the integration result in the r.h.s.

HU - It implements recurrence relation (22)
for the associated Laguerre polynomials. It is con-
structed as a linear operator which can be applied
recursively. The substitutions involved are imple-
mented by a LET rule. The associated Laguerre
polynomial in its argument must be denoted as
“lagp(m, a)”.

FX - It implements recurrence relation (23) for
the associated Laguerre polynomials. Like HU, it
is constructed as a linear operator which can be
applied recursively. The associated Laguerre poly-
nomial in its argument must also be denoted as
”lagp(m, a)”.

3.4. Main procedures

GS - It performs the Gram-Schmidt orthonor-
malization according to subsection 2.1, egs. (7),
(8) and (3). If there are no p-degeneracies, this
procedure simply calls NORMAPHI, whereas in
the opposite case eq. (7) is implemented using the
procedures displayed in the Tree 1 of fig. 1. Prior
to calling any other procedure, GS determines
how many (if any) p-degeneracies exist for the
required values of the pair (LAMBDA, L), and
informs the user about that effect. Upon exit, the
contents of the operator APHI have been over-
written with the orthogonalized expressions while
the corresponding norms have been stored in the
operator NORM(LAMBDA, MU, L).

NORMAPHI - It calculates, with respect to
the y-variable, the norm of APHI’s, eq. (3). This is
achieved (see Tree 1) by calling GAMMAO-
VERLAP, which evaluates eq. (8) for N =X" =\
and p'=p” =p. Upon exit, the norm has been
stored in the operator NORM(LAMBDA, MU,
L).

GAMMAOVERLAP - It evaluates eq. (8). It
calls CONV before applying operator DEFINT
which performs the final definite integrations. It
should be noted that there is only one value L for
the angular momenta as an argument to this pro-

cedure. This is due to the fact that the y-overlap
of two ket states with different values of L is
always zero (cf. the Glebsch-Gordan coefficient in
eq. (12)). However, the selection rules for the
seniorities (eq. (16)) are not built in this proce-
dure. This allows for an additional check concern-
ing the orthogonality with respect to different
seniorities (cf. section 2.1).

ME - This procedure evaluates the complete
matrix element between two kets in eq. (12). It is
the top level procedure of the Tree 2 in fig. 1. It
checks first the selection rules for gamma (cf. egs.
(15)-(16)). If successful, it proceeds to evaluate
the B-part by calling MEB. If the S-result is
nonzero, it calls CHECKAPHI to determine
whether the necessary wave functions APHI are
available and proceeds to evaluate the y-part of
the matrix element by calling MEG. As displayed
in Tree 2, this procedure consists basically of the
selection rules and the subsequent decisions on
whether to call MEG and MEB.

MEG - Calculates the Euler-angles part plus
v-part in ME. It consists essentially of the reduced
Wigner coefficient (RWC) of O(5) > O(3) multi-
plied by a usual Clebsch-Gordan coefficient and
a phase (see eq. (12)). Here the intermediate result
is divided by the square root of the product of the
norms for APHI1 and APHI3, so that the matrix
elements ME and MEG correspond to properly
normalized states.

RWC - Evaluates the reduced Wigner coeffi-
cient of O(5) D O(3) given in eq. (14). Since this
equation involves a linear combination of prod-
ucts of three wave functions APHI, only the dif-
ferent coefficients are determined in the present
procedure, leaving the y-integration of the three
APHT’s for the procedure TRIPLINT (see Tree 2).
Unlike MEG, the division with the corresponding
norms is not enforced here. If the user wishes to
calculate the RWC for normalized APHI’s, he
must implement this division through an ad-
ditional, but simple REDUCE statement.

TRIPLINT - For each term in the triple sum-
mation over the intrinsic projections K, K’, K"
in eq. (14) for which the corresponding
Clebsch—Gordan coefficient is nonzero, TRI-
PLINT performs the y-integration of the product
of three unnormalized wave functions APHL. This
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step is done in a way quite analogous to GAM-
MAOVERLAP, namely procedure CONYV is first
used and then the operator DEFINT is called.

MEB - This procedure calculates the B-integral
corresponding to eq. (13) for k=1 (see eq. (2)).
The selection rule (17) is first verified. As pointed
out in subsection 2.3, the integration over beta is
accomplished by utilizing the recurrence relations
(22) and (23) in order to transform the initial
B-matrix element into a linear combination of
orthonormalization integrals for the associated
Laguerre polynomials (cf. eq. (24)). For most
physical purposes, it is sufficient to restrict the
power p in eq. (9) to be a non-negative integer.
This is assumed throughout this paper. The method
adopted for the integration over the B-variable
fails when p is a negative integer. In this particu-
lar case, an error message will be displayed, stat-
ing that the present algebraic technique is unable
to deal with such integrals.

MECOS - This procedure is the top level pro-
cedure in the Tree 3 of fig. 1. It returns the matrix
element of BPOWERB;og(3y)POWERG petween two
kets specified by eq. (1), where POWERB = 2 X
RHO + 3 X POWERG. It first checks the selec-
tion rules for gamma (see next procedure). If
successful, it calls MEB in order to evaluate the
B-part (see Tree 3); if the B-part is nonzero, it
proceeds to call MEGCOS in order to evaluate the
y-part.

MEGCOS - This procedure has structure anal-
ogous to GAMMAOVERLAP, but with the ad-
ditional feature of a cos(3y) raised to a natural
power “sandwiched” between the two wave func-
tions APHI (cf. eq. (18)). The selection rules for
these matrix elements are taken into account by
considering all the possible degrees of the Legendre
polynomials, appearing in the expansion of a given
cos™(3y) (cf. Table 12.1 in ref. [19]). Since the
Legendre polynomials correspond to wave func-
tions PHI for momentum zero, only states with
the same value of L will be coupled by cos™(3y);
therefore, we keep with the practice of GAM-
MAOVERLAP and use only one value of L as an
argument for this procedure. As with MEG the
final result corresponds to properly normalized
SN L(v)’s, since the division with the square root
of the norms of APHTI’s is performed here.

3.5. Messages

3.5.1. Error messages

(***** aphi’s(, ,, ) not available

***x* the other K’s are probably missing);

**xx* the first argument must be BFLOAT or

EXACT;

(***** the combination L =, , lambda =, ,

*Ex %% s not possible);

*¥#x%x% N is different from 2 * NBETA +

LAMBDA or NBETA < 0;

**xx % present algebraic method is unapplica-

ble;

*¥#x**  (lambdal + lambda2 + power) is an

odd integer.

In addition to the above error messages that
correspond to the program PHIMANIP, the fol-
lowing four error messages are built-in in the
program PHISYM:

*¥*%x* Case for L =1 does no exist;

***x* required projection K does not exist;

*#kx* (lambda — 3 * mu) <L/2 .or. (lambda

—3* mu)>L;

*a*xxx (lambda—3 * mu)<(L+3)/2 .or

(lambda — 3 * mu) > L.

3.5.2. Informational and warning messages

*** done;

*** aphi’s (,, ) are available;

*** number of degenerate states:;

**x values of different possible mu’s:;
no mu-degeneracy;

*** WARNING: aphi’s should have been GS’

ed;

*** WARNING: aphil and aphi3 should have

been GS’ ed.

The last two warnings indicate that procedure
GS should have been called before calling the
present procedure.

In addition to these messages, the results of
ME and MECOS are displayed in a table form.
Apart from the complete final result that is saved
in the corresponding REDUCE workspace, this
table displays the intermediate results of MEB
(beta result) and MEG (gamma result). The sup-
pression and reactivation of this table display
depends on the value of FLAGMSG described
earlier.

% %k %k
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3.6. Accuracy of calculations

In floating-point arithmetic, a straightforward
implementation of the Gram—Schmidt process is
not advisable [14]. Indeed, extensive cancellations
in the summation over positive and negative con-
tributions appear as a rule in this case. The same
problem, in floating-point arithmetic, also appears
in the calculation of the gamma overlap of eq. (8)
for two different set of indices A and p, since the
trace over K is involved.

This, however, does not constitute a problem
for the algebraic codes, since they use exact arith-
metic. Indeed, as mentioned earlier, particular care
has been taken in the writing of the program so
that the implementation of the Gram-Schmidt
method is always carried efficiently in exact arith-
metic.

4. How to use the program: Examples

After calling the system REDUCE, one needs
to input both the program PHISYM and the
program PHIMANIP from previously prepared
files. In the test run output, we will assume that
these two files are named “phisym.red” and
“phimanip.red”, respectively.

The first three examples illustrate the use of the
program in interactive mode, while the fourth
example illustrates the use of the program in batch
mode.

4.1. Example 1

This example shows the implementation of the
Gram-Schmidt orthonormalization method (sec-
tion 2.1). For angular momentum L = 6, there are
two degenerate states when A =9 with p=1 and
r = 2. Indeed, before the orthonormalization, the
gammaoverlap of these two states is different from
zero. After the calling of procedure GS, the gam-
maoverlap is precisely zero. The full sequence of
the corresponding input commands is given in the
test run output.

4.2. Example 2

In this example, we present the evaluation of a
particular case for the general matrix element of
eq. (12). The T operator has been chosen to agree
with (—cos(3y)). This corresponds to the poten-
tial-energy-surface term which generates the pro-
late-oblate asymmetry [8,13] in the geometrical
model. The corresponding procedure is ME.

Since the operator T was restricted to agree
with (—cos(3y)), the result of ME can also be
reached through the procedure MECOS.

A complete description of the different steps
and indices involved in this example is given in
the test run output.

4.3. Example 3

The purpose of this example is to illustrate the
autonomous functioning of each procedure in one
of the trees of fig. 1. The partial beta and gamma
results displayed in the tables of the previous
example are reproduced by calling the procedures
MEB, MEG, and MEGCOS.

The result of RWC agrees with that of MEG
and MEGCOS when the division with the square
roots of the corresponding norms is taken into
account.

An examination of the test run output allows
for a direct comparison between the indices in
these procedures and in the procedures of the
previous examples.

4.4. Example 4

This example shows how to use the programs
PHISYM and PHIMANIP in batch mode. The
warning messages have been suppressed and preci-
sion 16 has been chosen to calculate two different
cases by calling procedure MEGCOS. The APHI’s
used have been orthonormalized first by calling
procedure GS.

Notice that RES1 is accurate to 16 significant
digits. RES2 is exact, however, in spite of the
bigfloat option, since its vanishing is produced
through the tracing over the index K before the
bigfloat mode is activated when dividing with the
square root of the norms.
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5. Discussion and future perspectives

The exact arithmetic provided by REDUCE
constitutes a powerful advantage in the manipula-
tion of the states associated with the U(5) D O(5)
> O(3) chain of groups. This is particularly rele-
vant in the case of the Gram-Schmidt orthonor-
malization.

The related facility of using arbitrary floating-
point arithmetic offers additional flexibility in
handling the square roots, and thus speeding up
the calculation, while preserving the desired rela-
tive accuracy.

To take full advantage of the possibilities inher-
ent in the present programs, an elaborate scheme
of input-output for intermediate results is advisa-
ble in order to bypass the internal-space limita-
tions imposed by REDUCE. This scheme is cur-
rently under development. It is designed to enable
the input of bigfloated intermediate results without
loss of precision by using extensive text manipu-
lation.
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TEST RUN OUTPUT
REDUCE 3.3, 15-Jan-88 ...
1: in "phisym.red”$
2: in "phimanip.red”$

T W FIEH NN W

Example 1 ®kxksrksdsswnss
3: mkaphi(9,1,6);

**x done

4: mkaphi(9,2,6);

*#% done

5: gammaoverlap(9,1,9,2,6);

*#% aphi’s(9,1,6) are available

»%% aphi’s(9,2,6) are available

6: gs(9,6);

*#% number of degenerate states: 2
»%x% values of different possible mu’s:
1

2

#»% aphi’s(9,1,6) are available
*x% aphi’s(9,2,6) are available
*»% done

7: gammaoverlap(9,1,9,2,6);

*»% aphi’s(9,1,6) are available
*%% aphi’s(9,2,6) are available

0

% oerkwnnnpnrenrnnr End of example 1 wassad ek iasrisks

PR TS

E X amp le 2 ssesskdssiesdiss
8: mkaphi(8,1,6);

*¥% done

9: mkaphi(3,1,0);

*#x done

10: gs(8,6);

###% no mu-degeneracies

*%% value of mu: 1

*»% aphi’s(8,1,6) are available

*x»% dene
11; me( exact, 13,9,1,6,6, 2,3,1,0,0, 10,8,1,6,6);

*xx aphi’'s(9,1,6) are available

#%% aphi’s(3,1,0) are available

*%% aphi’s(8,1,6) are available

%% WARNING: aphil and aphi3 should have been GS’ ed

%% RESULTS FOR ME( 13,9,1,6,6,

2,3,1,0,0,

10,8,1,6,6)

diff. phi components for 7(3,1,0,0):

2
COS(G)»(4+SIN(G) - 1)

power of beta : 7

14985%SQRT(23)
beta result @ - ceeemmmm
4%SQRT(2)
63%SQRT(2057)
gamma result : —-ccememmmmeen
187%SQRT(16399)

complete result :

944055#SQRT(2057)

748%SQRT(1426)

12: mecos(exact, 13,9,1,6,6, 10,8,1,6,6, 2,1);
*#% aphi’s(9,1,6) are available
#*#» aphi’s(8,1,6) are available

*%%x WARNING: aphi’s should have been GS’ ed
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**x RESULTS FOR MECOS( 13,9,1,6,6,

10,8,1,6,6,
2,1)
power of beta : 7
14985%SQRT(23)
beta result : - —memmmememmeeoao
4%SQRT(2)
63%SQRT(2057)
gamma result : = eeememmmeeee o
187%SQRT(16399)

complete result :
944055%SQRT(2057)
748%SQRT(1426)

% wARHHKHRRRNRHHNN¥ END OF @XAMPLE 2 % HHHHHHHHHIHHH KKK
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ae

Example 3 #exssedenrexs
13: meb(exact, 9,2, 8,1, 7);
14985%SQRT(23)
4%SQRT(2)
14: meg(exact, 9,1,6,6, 3,1,0,0, 8,1,6,6);
«## aphi’s(9,1,6) ere available
*** aphi’s(3,1,0) are available
*#»% aphi’s(8,1,6) are available
*¥% WARNING: aphil and aphi3 should have been GS’ ed
63#SQRT(2057)
T 187%5QRT(16399)
15: rwe(9,1,6, 3,1,0, 8,1,6 );
*xx aphi’s(9,1,6) are available
#=#% aphi’s(3,1,0) are available

**% aphi’s(8,1,6) are available

16: megcos(exact, 9,1, 8,1, 6,1);

*x% aphi’s(9,1,6) are available-

*##% aphi’s(8,1,6) are available

##% WARNING: aphi’s should have been GS’ ed
63#SQRT(2057)
187%SART(16399)

% wxwrxsnnnnkxkdn ENd Of example 3 #¥rekrrkk%EHEX%%

[T %N
”n

Exampled wexxxwx

$r rsys:reduce
off int;

of f echo;
flagmsg:=msgoff;
FLAGMSG := MSGOFF
in “phisym.red”$
in ”phimanip.red”$
mkaphi(31,7,10)$
mkaphi(31,8,10)%
mkaphi(32,8,10)$
mkaphi(32,9,10)$

gs(31,10)%
gs(32,10)%

precision l6;

16

write resl:=megcos(bfloat,31,7,32,8,10,1)%
RES1 := 0.015 72734 97917 0488

write res2:=megcos(bfloat,31,7,32,9,10,1)%
RESZ := 0

os

%ok krerrxapnnrxxxxx End of e x amp 1l e 4 #xxx



