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Abstract. The line shape of the plasmon resonance in a 
cold, small sodium cluster (NAB) is calculated taking into 
account its coupling to the quantal quadrupole fluctua- 
tions of the cluster shape. This coupling is found to give 
rise to a small damping factor (F /h  O) l~  0.03, where h o) 1 
denotes the energy centroid and F.the full width at half 
maximum of the resonance), and to an asymmetric line 
shape with Gaussian behaviour in the wings. 

PACS: 73.20.Mf; 36.40. + d; 71.45. - d 

The dipole surface plasmon has been observed in small 
clusters of alkali atoms [1,2, 3,4]. While the mean fre- 
quency of the dipole absorption is simply determined by 
the density of the valence electrons, the line shape is af- 
fected by a number of interesting coupling effects in- 
volving partly the single-particle degrees of freedom of 
the electrons (Landau damping) [5, 6, 7, 8] and partly the 
configurational degrees of freedom of the positive ions. 
Among the latter effects, the coupling to the quadrupole 
shape deformations, has been discussed in a number of 
recent investigations [9, 10]. These studies which treat the 
quadrupole degrees of freedom as a one dimensional 
axially symmetric problem, have yielded total line widths 
which although somewhat too narrow are comparable 
with those experimentally observed for clusters having 
closed (spherical) electronic shells. 

In the present note we consider the rotationally in- 
variant coupling of the dipole mode to the full set of 
(five-dimensional) quadrupole shape oscillations. This 
problem has been studied previously by Le Tourneux 
[11, 12] in connection with the line broadening of the 
dipole absorption in atomic nuclei (see also [13]). It will 
be concluded that the inclusion of the full set of quad- 
rupole oscillations leads to a rather different line shape 
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as compared with the previous analyses as well as a con- 
siderably stronger total coupling effect. 

After defining the Hamiltonian that describes the cou- 
pled motion of dipole and quadrupole quanta, we present 
a dimensional analysis of the different terms in order to 
exhibit the order of magnitude of the effects to be ex- 
pected. Two solutions of the coupled system are then 
discussed; the first provides an analytic approximation 
in the limit where the quadrupole frequency is small com- 
pared with all the other frequencies in the problem, while 
the second solution is obtained by "brute force" diago- 
nalization of the dipole-quadrupole coupling. 

The Hamiltonian describing the coupling of the dipole 
surface plasmon and quadrupole shape oscillations is 
(cf. e.g. [12]) 

H = H  1 ~- H2 ~- Hcoupl , 

2 

/-/~=mo2 Z * CAp C~.~ 
u=-~ 

H~o~pl = K(a ~°))2 ~2(°) ((c~ cl) 2 (c~ + c2))0, 

(1) 

where hogx are vibrational frequencies of the dipole sur- 
face plasmon ()t = 1) and of the quadrupole shape oscil- 
lations (2 =2); c*~u and cxu are the boson creation and 
annihilation operators for the different vibrational modes 
and the parenthesis notation in the last line indicates the 
coupling of the tri-linear combinations of boson opera- 
tors to zero total angular momentum. Note that the quad- 
rupole surface oscillations of the cluster are quite differ- 
ent from the dipole oscillations associated with the plas- 
mon resonance. Indeed, while in the dipole oscillations 
the electrons are moving in opposite phase with respect 
to the positive ionic core, in the quadrupole motion the 
valence electrons oscillate "in phase" with the ionic core. 
The restoring force for the quadrupole oscillations is still 
determined by the adiabatic deformation energy of the 
valence electrons, but the inertia associated with this mo- 
tion is controlled by the heavy ionic core. 
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The coupling term in (1) is the leading order effect 
appropriate in the limit of small amplitude oscillations 
[14]. This coupling is expressed in terms of the zero-point 
amplitudes aa (°) of the dipole and quadrupole oscillations 
and of a coupling constant K which can be related [9] to 
the static restoring force, C~,for the dipole surface plas- 
mon according to 

__(27~ '/2 
K = \ ~ - / /  C 1 . (2) 

The relation (2) is obtained most directly by replacing in 
(1) the dynamic quadrupote amplitudes ~.2~'(°) t~2z, t'~* + c2u) 
by static c-numbers 0¢2~ which transforms (1) into the 
hamiltonian for the surface dipole plasmon in a static 
ellipsoid. The classical result [15] that in this geometry 
the normal modes of the Mie resonance correspond to 
oscillations along the three principal axes of the ellipsoid 
with frequency shifts with respect to the frequency oJ~ in 
the spherical system, 

6°)1~_ 3 8R,~ 
5 

~ Ro 
(x  = 1, 2, 3 ) ,  (3) 

requires the relation (2). Note that in the nuclear problem 
treated by Le Tourneux [ I 1 ], the dipole mode is a form 
of second sound and the relation corresponding to (3) 
has a coefficient 1 instead of 3/5. 

The zero point amplitudes ~(0) are given in terms of 
the restoring forces and frequencies by the usual expres- 
sions 

~a , 2 C~" (4) 

We consider first a dimensional analysis of the coupled 
system in order to exhibit the relative order of magnitude 
of the different terms and the variation of these terms 
with the parameters describing different clusters. We ig- 
nore the effect of Landau damping on the dipole surface 
plasmon and thus assume a single dipole mode exhausting 
the full Thomas-Reiche-Kuhn (TRK) sum rule. The fre- 
quency of the surface plasmon mode is proportional to 
the square root of the density of the valence electrons. 
Thus we have 

h(.,o I ~ rs- 3/2 Ry,  (5) 

and 

(0¢ }o))2 , . ,N-  5/3 rs-1/2, (6) 

where N is the number of alkali atoms in the cluster and 
r s is the Wigner-Seitz radius in atomic units. 

Since we are considering quadrupole shape oscilla- 
tions of spherical clusters with closed electronic shells, 
the restoring force is C2"N,?, F [16] and thus 

,.Ry 1 (m'~ '/2 
too2 ' 

g s 
(7) 

and 
(N (0),t2 ~ 1 ( . m ~  1/2 

, \ M /  ' 
(8) 

where the electron and ionic masses are m and M re- 
spectively. The large mass involved in the shape oscilla- 
tions implies that hrn 2 is in most cases small compared 
with the other energies involved in the problem and that 
the amplitude e2 ~°) ~ 1, ensuring the adequacy of the first 
order approximation for the coupling term appearing in 
(1). 

The width F of the dipole absorption resonance as- 
sociated with transitions from the ground state 
I ni = n 2 = 0)  can be estimated from the dispersion in en- 
ergy of the complete set of dipole states which exhausts 
the TRK sum rule: 

F2,~(r /1  = ln2=0 [ (H - -hgO l )2  [nl = ln2=0 ) 

= (9) 

from which we find 

"~1/2 ( M ) l / 4 .  F t s 
h o)2,-,~575 (10) 

For the Na 8 cluster th~ relation (10) implies F more than 
an order of magnitude larger than hoJ 2. 

For dipole absorption associated with clusters having 
temperatures T>>hco 2, the estimate (9) is multiplied by 
a factor of the order of the number of thermally exited 
quadrupole quanta in the initial state 

T (H2)T,'~hO.)~2, (1 1) 

and thus 
---- / 

/C-£2 "" T (12) F~.,hco 1 hoJ 1 Ne F" 

Since coupling to the density fluctuations of the positive 
ions (bulk resistivity [17]) gives an additional damping 
width of order T, this contribution to the total damping 
width will dominate over the contribution (12) in the case 
of large clusters and high temperatures. Therefore, in the 
present work we are especially considering small clusters 
(NG 100) and low temperatures (T'~ 103 K). 

The estimate (10) implies that it should be a useful 
approximation to consider the quadrupote shape of the 
cluster to be constant during the damping process of the 
dipole mode. Such an approximation is obtained by re- 
placing the quantal operator (c~ + c 2) in (1) by a c-num- 
ber amplitude; the dipole line shape then directly reflects 
the probability distribution of this amplitude in the 
ground state (n~ =0)  configuration. The resulting line 
shape has been given" in [ 11 ] and can be written as 

× ((3y 2 -  1) exp (--y2) + 2 exp ( -- 4y2)), (13) 
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Fig. 1. The strength function associated with the plasmon resonance 
of Na 8 at zero temperature. The results of the diagonalization of 
the hamiltonian defined in (1) in a basis including all states up to 
40 quadrupole phonons are shown as a set of vertical lines, rep- 
resenting the oscillator strength for the excitation of the dipole 
phonon resonance. The continuous line corresponds to distributing 
the oscillator strength f over a Lorentzian line S (E) = 2 f E 2 A ~/ 
(7~ ((E2-E~)Z+E2A~)), where the averaging parameter A E was 
taken to be 0.015 eV, the minimum value to smooth the resulting 
strength distribution. It is noted that the FWHM obtained from 
the strength function is not affected by this small value A E. The 
result of the adiabatic approximation given by (13) is displayed 
with a dashed curve 

where 

(~E-hOl"~ (14) 
Y-- 3 \ho31c~(2°)] " 

The line shape implied by (13) exhibits three peaks (see 
Fig. 1) since the phase space for the five-dimensional 
quadrupole motion is dominated by triaxial shapes. The 
line shape in (13) is Gaussian, due to the fact that the 
dipole-quadrupote coupling in (1) leads to a time de- 
pendent problem in which the strength of the coupling 
(proportional to the quadrupole amplitude) increases lin- 
early in time. Thus the probability of  the unperturbed 
dipole mode decays as a Gaussian function in time which, 
by a Fourier transform, leads to a Gaussian function in 
energy. 

Since the probability distribution of quadrupole fluc- 
tuations at non-zero temperature has the same Gaussian 
dependence on the five quadrupole amplitudes as does 
the zero point motion in the quantum ground state, the 
result (13) can also be employed for T>> h co 2 by replacing 

(°)•]//•T (15) 
2 V C 2 • 

In order to further explore the line shape implied by the 
dipole-quadrupole coupling we have carried out a nu- 
merical evaluation of  the spectrum implied by the Ham-  
iltonian defined in (1). Using a basis with all states up to 
n 2 = 40 quadrupole phonons the Hamiltonian (1) was 
diagonalized. The dipole absorption spectrum intensities 
associated with the resulting eigenstates Ii) (proportional  
to [ ( I =  I n  I = l n 2 = 0 ] i  ) [2) is plotted in Fig. 1 for the 
assumed parameters : 
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ho) 1 = 2.58 eV, 

ho)2= 1.3 10 -2eV,  (16) 

C2= 15.8 eV. 

These values have been selected to be representative for 
describing the cluster Na  8 [ 1, 4]. The quadrupole restor- 
ing force C 2 has been calculated by summing the inde- 
pendent particle energies of  electrons moving in a mod- 
ified harmonic oscillator potential of  the Clemenger-Nils- 
son model (for details, cf. [18]), expanding around the 
spherical configuration [19]. The quadrupole frequency 
is then obtained by assuming that the oscillator sum rule 
for the mass quadrupole operator  is exhausted in the 
single quadrupole surface mode. 

It is seen from Fig. 1 that the line width obtained from 
the detailed diagonalization is qualitatively in good agree- 
ment with the prediction of  the adiabatic approximation,  
but the details of  the line shape are poorly reproduced 
by the approximate solution even though the quadrupole 
frequency is more than two orders of  magnitude smaller 
than the dipole frequency and one order of  magnitude 
smaller than the resulting line width. The marked asym- 
metry of  the line shape obtained from the numerical di- 
agonaIization is another effect of  order hooa/F that goes 
beyond the adiabatic approximation.  The longer tail on 
the high energy side apparently reflects the fact that the 
amplitude of  quadrupole motion is increasing with ex- 
citation energy and is therefore larger on the high energy 
side of  the line. 

We conclude that the coupling of  the dipole surface 
plasmon to the quadrupole surface oscillations of  small 
metallic clusters at low temperatures appears to provide 
a line width similar to the observed value [3], and that 
this coupling predicts an asymmetric line shape with a 
high energy tail that is more extended than on the low 
energy side. The dipole-quadrupole coupling yields a line 
shape in which the wings of the resonance have Gaussian 
form. 

Discussions with S. Bjornholm are gratefully acknowledged. 
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