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Abstract. A linear response formalism is developed which is based on density functional theory within
the local density approximation, but which is now corrected for its spurious self-interaction errors, in
the way originally proposed by Perdew and Zunger for ground state calculations. The original
formulation is extended to incorporate self-interaction corrections in the scrrening terms. The general
formalism is then applied to the calculation of the static and dynamic response of the metal clusters
{Nag, Nag'}, (Na,y, Naj,) and {Na o, Naj;] within the jellium model. Comparison with experimental data
and with other theoretical calculations indicates that the present formalism accounts for the overall (and
most of the fine) features of the photoabsorption spectrum of these systems, providing a systematic
improvement with respect to previous approaches. The remaining discrepancies are rationalized in terms
of the effects to be expected by correctly accounting for the discrete structure of the ionic cores.
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1 Introduction

The special stability of small particles of alkali metals containing 8, 20, 40, . .. valence
electrons was predicted by one of us [1] to be a physically observable effect associated
with the closure of shells of electrons moving independently in a spherically symmetric
average potential. These conjectures were based on the theoretical description of the
valence electrons of these systems by means of Density Functional Theory (DFT),
invoking the Local Density Approximation (LDA) for Exchange and Correlation (XC),
and replacing the ionic cores by a smeared, positive, constant and spherical volume
charge density of radius Ry = ' '?, r, being the Wigner-Seitz radius of the bulk metal
and ../ the total number of atoms (the so-called jellium model). A few months later,
experiments carried out in Berkeley by Knight et al. [2] were published, confirming these
predictions and proposing the shell model for the valence electrons of metal clusters.
Mainly due to their remarkable simplicity, jellium and jellium-based models have been
widely used in cluster physics since then.

As early as 1984, the Time-Dependent LDA (TDLDA), developed in 1980 in atomic
physics [3], was applied to study the static and dynamic polarizability of small sodium
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particles [4]. The polarizability is of great interest due to its simple relation to an
experimental observable, the photoabsorption cross-section. In short (and at the risk of
oversimplification), three main conclusions were drawn then:

1. Quantum Size Effects (QSE) lead to a sizeable red-shift of the plasmon resonance with
respect to the classical Mie value.

2. As the cluster size decreases, the volume plasmon gradually disappears.

3. The surface plasmon, which for large clusters displays a single, collective peak,
becomes strongly fragmented for the smaller clusters, due to its coupling to electron-
hole pair excitations (Landau fragmentation).

Measurements of absolute photoabsorption cross-sections in free clusters were pioneered
in Berkeley, in 1987, by de Heer et al. [5]. Since then, many experiments [6] have widened
our knowledge of the response of these small systems to light, both in neutral and in
positively ionized species.

Theoretically, essentially two microscopic approaches have been used to calculate the
photoabsorption cross-section of small metal particles:

1. Ab-initio, all-electron quantum molecular methods [7, 8];
2. Jellium-based TDLDA and related methods [4, 9, 10, 11].

Because metal clusters can be produced with any number of atoms, from the simple dimer
to a macroscopic piece of bulk solid, the transition from atomic to bulk behaviour
constitutes one of central and most callenging issues to be addressed in this field. In this
context, the enormous complexity of the quantum molecular methods, together with
their remarkable sensitivity to different basis sets, precludes their practical application.
In fact, only few calculations [7] are available which make use of these methods. Irre-
spective of these drawbacks, the quantum molecular methods are, at least conceptually,
capable of producing accurate results for the smallest sizes, being therefore useful as a
testing ground for simpler and more flexible many-electron cluster theories.
Jellium-based calculations of the photoabsorption cross-section of small metal
particles are now available for a size range spanning over three orders of magnitude [10],
but the larger sizes calculated so far (N = 2000) are still insufficient for the observation
of the expected transition to the bulk-live behaviour, which is conjectured to occur for
particles containing =~ 10* atoms [11]. On the other hand, there is experimental evidence
for the occurrence of “atomic shells”’, which are attributed to the dominant effect of
faceting in large clusters as compared to the small ones, in which the electronic shells seem
to dominate [12]. Clearly, the jellium is a model for electronic shells. Comparison with
experiment should, in principle, enable one to infer the relative importance of the atomic
structure in the resulting cross-sections by testing the validity of a pure electronic shell
model such as the jellium model. To this end, however, one must use an appropriate
electronic shell model, since otherwise any conclusions regarding the relative roles played
by the electrons and the ions may be hidden in subtle cancellations or wrong assumptions.
In this paper, we address this issue by calculating the photoabsorption cross-section
of small metal clusters, within a purely electronic shell model (the jellium model), treating
the valence electrons in DFT making use of the LDA for XC. Furthermore, we correct
this theory for its most important drawback, as far as small systems are concerned — its
self interacting character. The Self-Interaction Correction (SIC) will be carried out in the
way proposed by Perdew and Zunger [14] for the calculation of the ground-state
properties, which constitutes the most tested and successful of SIC approximations.
Furthermore, we shall extend the SIC scheme also to the calculation of the excitation
spectrum. To this end we shall correct for self-interaction also in the screening self-
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consistent field induced, in linear response theory, by an external perturbation. We
believe that the general SIC formulation introduced in the present work provides a state
of the art description of excitations in general, finite many-electron systems. By
comparing with the available experimental data, we shall infer the importance of the ionic
structure, whereas comparison with the standard TDLDA results will enable us to deduce
the magnitude of the self-interaction corrections.

Experimental data on alkali metal clusters are by now sufficient to indicate, in short,
that the jellium-based LDA and TDLDA approaches are off by as much as 15% in the
description of the ground state and excited state properties of these systems, though able
to qualitatively reproduce their main features. Many reasons have been invoked to explain
this disagreement, the most popular being that a purely electronic shell model is
inadequate because it neglects the ionic structure which should play an important role.
This line of reasoning prompted a profusion of models [15, 16, 17] which tried to go
beyond the jellium model in some more or less phenomenological way, simulating the
structure of the ionic cores. In most of these attempts it was required that the resulting
model be simple. In our opinion, these procedures may be justifiable only after the
electronic part (which constitutes an essential ingredient in all these models) has been
worked out in a physically appropriate way. As a matter of fact, we shall obtain results
for the static polarizabilities and photoabsorption cross-sections which compare
quantitatively with the available experimental data. This indicates that, for the clusters
we are considering here, electronic effects play a dominant role, the ionic structure
providing a perturbative effect responsible, e.g., for fine (but important) effects in the
photoabsorption line shape [18]. This is also supported, at present by three other
independent sources of information:

1. As early as 1986, P. Sheng et al. [21] calculated the static polarizabilities of small
sodium particles by including elastic deformations in the jellium background. As a
result, the polarizabilities were changed by as much as 1%, which is manifestly
insufficient to bridge the 15% gap between LDA theory (considered in that paper) and
experiment.

3 The recent calculations of U. Rothlisberger and W. Andreoni [20, 22] who performed
ab-initio LDA calculations of small (up to 20) neutral sodium clusters, fully relaxing
the ionic positions within the Car-Parrinello method, show that angular momentum
is approximately a good gquantum number to classify the electronic orbitals of the
valence electrons of the magic clusters. Furthermore, the densities obtained with the
ab-initio method, when sphericalized, become very similar to the densities emerging
from the jellium model. Finally, good (even quantitative) agreement was found
between the Kohn-Sham eigenvalues of the ab-initio fully relaxed structures and the
self-consistent spheroidal jellium model results of Ekardt and Penzar [19, 23].

3. Most important, the experimental determination of the quasiparticle energies of smalil
potassium clusters [25] show striking similarities to the calculated single-particle
spectrum of the electronic shell model of Clemenger [26].

This bulk of information leads us to think that the jellium electronic shell model “works
well””. This is supported by the results of the present work.

The paper is organized as follows. In section 2 the formalism is developed, and its
derivation is carried out in close relation with the standard TDLDA. Section 3 is devoted
to the discussion of the results and their physical implications, while the general
conclusions and future prospects are collected in section 4. Mathematical details are
deferred to an appendix.
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2 Formalism

To describe the Ground State (GS) of a cluster with ./ ions and N valence electrons, in
the LDA to XC, we start by solving the Kohn-Sham equations,

— K2
[ e ] wi(@) = & w;(r), (1)
where the LDA mean-field (MF) potentials reads

N
Var@® = V() + ¢ if%'l—i Ve ln@Ln® = % ol @
1 o
V1(r) is the jellium potential of .# positive ions, y;(r) represents the eigenfunction with
quantum numbers j, and ¢; is the corresponding eigenvalue. V. is the LDA for XC for
which we use the parametrization of Gunnarsson and Lundqvist [27]. As is clear from
the above definition of the average potential, each electron interacts with itself spuriously
via the construction of the total electronic potential by means of the total density. The
SIC attempts to correct for this deficiency in the average potential, by replacing the above
scheme by a similar one, in which a set of Kohn-Sham-like equations is still solved, but
now with an orbital dependent potential:
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where V[ is relate to Vyp by
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To make the notation unambiguous, we redefined the eigenfunctions and eigenvalues,
such that ) (r) represents the eigenfunction of orbital potential V). with quantum
numbers j, and a(’) the corresponding eigenvalue. Furthermore, we shall consistently
denote by X a given self-interacting quantity and by X the corresponding quantity in the
SIC case. In this notation the total density appearing in Vg is now defined as [28]

Vi) = Vye(r) — € § — Vil ;) = |#9@) |2 @)

z
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i=1

Contrary to the self-interacting case, in which the Kohn-Sham eigenvalues and
eigenfunctions have no direct relation to the quasiparticle energies and wave functions
of the cluster, the SIC-LDA solutions are expected to constitute good representations of
these quantities (cf. Refs. [14, 29]).

We shall consider now the general theory of linear response to an external perturbation.
For definiteness, we shall start with the self-interacting case (TDLDA), including the SIC
later.

Under the action of an external, time-dependent perturbation of the form

V() = — 1! Py(cos@) cos(wt) , (6)
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the valence electrons will respond, to zero order, independently. The independent-particle
induced density will oscillate in phase with the external perturbation, its single Fourier
component being given by

dng(r, w) = §dry xo(r, 15 @) Ve (ry, @), (7
where the independent-particle susceptibility is given by
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In the above equation, f; represents the Fermi occupation factor (1 for occupied orbitals
and 0 otherwise) and G is the retarded Green’s function associated with the LDA
Schodinger-type equation,

[E L VMF@)] G, ri, E) = 8@ — 1)) 3 (10)
2m

it possesses the eigenfunction expansion,

_ o wi(r) w(r)*
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The imaginary infinitesimal § [31] ensures the appropriate causality properties of this
Green’s function, fixing the boundary conditions to be imposed on the solution of
Eq. (10).

The equality between Eqgs. (8) and (9) relies on a subtle cancellation of two terms.
Indeed, as becomes clear by simple inspection of Eq. (11), the first term in Eq. (9)
includes all transitions from a given occupied state into all possible states (including
eventually itself), which manifestly violates the Pauli principle. The Pauli forbidden
transitions are exactly cancelled, however, by the second termin Eq. (9). This has the clear
advantage that the infinite sums in Eq. (8) are now replaced by a sum over the (finite)
occupied, single particle states already determined in the GS calculation, together with
the solution of Eq. (10) for the Green’s function.

The independent-particle approximation overestimates the response of the system to
the external perturbation. This is because the screening electronic field due to the induced
density is not taken into account. In linear response, one includes this field by requiring
a self-consistency condition between the induced density and the screening potential.
Denoting the linearly induced density by d» and expanding the potential in Eq. (2)
keeping only the linear terms we get [32]

on(ry, w)dry + 0 Vie[n(0)]

V — p2
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on(r, w) . (12)
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The linear response equation for J n reads, then,
on(r, w) = [ drixe(, r; @) [V (v, @) + Viereen (ry, @)1 - (13)

This equation constitutes the TDLDA equation for the induced density. We proceed now
by correcting this formulation including SIC. We shall distinguish two different levels of
SIC.

The SIC scheme implies several modifications in the independent-particle response.
Since the single-particle potentials are now orbital dependent, the independent-particle
susceptibility is conveniently rewritten as

Il
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The (orbital dependent) Green’s functions G%) are now related to the solution of the
following equation,
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The physics associated with the above equations is quite simple. Because the potential is
orbital dependent, the transitions from a given occupied state should be computed with
the potential appropriate for this state. This is accomplished through Eq. (15) and
ensures that orbitals into which the electron is promoted are SIC as well. The present
approach is closely related to the well known Improved Virtual Orbitals (IVO) method
widely used in atomic physics and quantum chemistry [34]. G¥) is obtained from G®
through Eq. (16). The additional terms explicitly avoid any violation of the Pauli
principle, since in the SIC case, the subtle cancellation discussed above in connection with
Egs. (8) and (9) no longer holds, because the forbidden upward transitions are different
from the forbidden downward transitions.

So far, we have defined a SIC independent-particle susceptibility. Calculation now of
the linearly induced density via Eq. (13) using the screening potential defined in Eq. (12)
leads to the first level of SIC response, which we denote by SIC-TDLDA [35]. This
formalism contains most of the essential features inherent to a SIC theory and was shown
[35, 36] to lead to systematic improvements with respect to the TDLDA, when compared
with available experimental data. However, SIC has been neglected in the screening
potential, which implies that screening effects are overestimated at the level of SIC-
TDLDA. Indeed, from the definition of Ve, in Eq. (12) it is clear that there is a
spurious self-interaction due to the fact that this potential is calculated with the total
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induced density. The appropriate screening term to incorporate in a SIC theory is an
orbital dependent screening which reads (cf. Eq. (12) and Ref. [37])

67, w) — 679, w)]dr

IF}gc)rf:cn (l‘, CU) = 32.‘
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y OVl
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where d7%)(r) are now the orbital contributions to the total SIC screened induced
density
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Eq. (18) together with Eqgs. (14) and (17) enable us to write now a system of coupled
equations (as many as the number of occupied orbitals) constituting what we call FULL-
SICTDLDA equations:

0RO, ) = [ dr, AV, 1y, @) [V (g, @) + Veen(ty, @)] . (19)

The general solution for & # is non-trivial, even at the TDLDA level, and has in this case
been carried out only for a restricted class of geometries of the jellium background [9,
38, 39]. When the number of valence electrons corresponds to a “magic number”, a
spherical shape of the jellium background gives the appropriate choice, the NV electrons
filling completely a given number of spherical electronic shells. It is then convenient to
solve the equations derived earlier in spherical coordinates, in which the integration over
the angle variables can be obtained in closed form, reducing the problem to the solution
of a set of radial equations (details can be found in the appendix). Moreover, for the
external field defined in Eq. (6) (with a well defined angular momentum /), the response
is diagonal in / and the polarizability of multipolarity / is related to the /-component
dny(r, w) by

+ oo £
2 Elif'T [ drr+?omn w), (20)
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the photoabsorption cross-section being simply given in terms of the imaginary part of
a as

g(w) = Gnw/c) Imla;_(w)] . 21)

This equation completes our formalism. Before discussing the results, we would like to
comment on the applicability of the general formalism just developed. The SIC proposed
in Ref. [14] and adopted in the present work was shown to reduce to the LDA in the limit
of extended systems, such as bulk metals. The same features are expected for the SIC of
the self-polarization in the original LDA screening potential. In practice, this means that
the SIC provides a finite size effect, and as such, it is worth consideration in finite
systems, excellent examples of which are atoms, molecules and clusters. For such systems,
SIC is expected to provide significant improvements with respect to LDA.
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3 Results and discussion

We applied the formalism developed in the previous section to the calculation of static
and dynamic dipole polarizabilities (that is, / = 1 in Eq. (6)) of sodium particles (this,
in our formulation, means that we fix the Wigner-Seitz radius 7, to be that of bulk
sodium, 4 a.u.) with 8, 20 and 40 valence electrons, in different ionization states namely,
{Nag, Nag'}, (Nay, Naj;} and {Nay, Naj;}. We shall begin by discussing the results
obtained for the static polarizabilities, proceeding with the results for the photo-
absorption cross-sections.

3.1 Static polarizabilities

Table 1 shows the results for the static dipole polarizability of all clusters considered in
this work. The first two columns display the results for the case in which this quantity
is computed with Eq. (20), replacing 67, (r) by its independent-particle counterparts,
calculated in LDA (dng ;—;(r)) and SIC-LDA (67 =(r)) by means of Eq. (13) and
neglecting screening effects. The remaining columns correspond to the TDLDA, SIC-
TDLDA and FULL-SIC-TDLDA screened polarizabilities, and to the experimental
results [41], (available only for the neutral species). Since the LDA eigenfunctions are very
good representations of the quasiparticle wave functions [40], the increase in the
independent-particle polarizability (from LDA to SIC-LDA) is mainly due to the fact that
in SIC-LDA the quasiparticle energies are used, instead of the Kohn-Sham eigenvalues
utilized in the LDA case (cf. Egs. (8) and (14)). As anticipated, the neglect of screening
leads to a rough overestimation of the response. Screening effects play a fundamental role
at all levels of response, as can be inferred from the remaining columns of Table 1. Both
in TDLDA and in SICTDLDA, screening leads now to static polarizabilities which are
too small. Note, however, that SIC-TDLDA shows a significant and systematic improve-
ment with respect to TDLDA and in better agreement with experiment. By comparing
the SICTDLDA and FULL-SICTDLDA results, one can conclude that the under-
estimation of the polarizabilities is due to spurious self-interaction in screening. Indeed,
both at TDLDA and SICTDLDA levels an electron screens itself, which leads to too
much screening. By including SIC, excellent agreement with experimental data is
obtained.

We would like to point out, finally, that for each group of clusters with a given number
of valence electrons, the polarizability is smallest for the cations. This is qualitatively

Table 1 Results for the static polarizabilities of [Nag, Nag'}, (Na,, Naﬂ} and {Nay, Naj}, in uits of

= Nr? r; (where N is the number of valence electrons) calculated using the LDA and SIC-LDA
mdependent particle response (which neglects any screening effects), as well as using the TDLDA, SIC-
TDLDA and FULL-SICTDLDA screened responses. EXP stands for the experimental values taken from
Ref. [41].

LDA SICCLDA TDLDA  SICTDLDA FULL-SICTDLDA EXP

Nag 4.95 5.23 1.41 1.52 1.70 1.72 + 0.03
Nag 4.50 4.69 {23 1.31 1.46

Na,y, 8.00 8.64 1.34 1.46 1.61 1.58 + 0.04
Naj;, 7.64 8.15 1.24 1.33 1.45

Na,  11.80 12.70 1.30 1.41 1.51 1.56 + 0.04

Najy, 11.49 12.28 1.24 1.32 1.41
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understood in terms of the net confining force with which the ionic background attracts
the valence electrons. Because this force is largest in the cations, the electronic density
will be most compressed, leading to the smallest polarizability. This qualitative reasoning
is fully supported by a straightforward calculation of different radial moments of the
associated ground-state densities, which are, of course, smallest for the cations.

3.2 Photoabsorption cross-section

Results for the dynamical response of the 8, 20 and 40 valence electron systems, at all
levels of response, are plotted in Figs. 1 to 3, respectively. In each figure, and whenever
available, experimental data are illustrated by horizontal arrows indicating the energy
range covered experimentally at present, and by vertical arrows positioning the plasmon
peaks identified so far.

T T T T
- .L LDA+ ]
2k ‘ Nag™ ] R
o ]
5 -
? - -
0t t f 0
i sc ]
N"i 2 | 4 e W
z 1 =
B i u 1 -
b 0 - b 5
I ]
0 Ln A JL 0 — f 9 f 0
e ®[ FSC ]
20 : = 2l | i 0 F
| ol ] il o |
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i T ] i .
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75 275 375 15 25 35 2 3 175 275 375
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Fig. 1 Line shapes of the photoabsorption Fig. 2 Same as Fig. 2 for Na,, and Naj,.

cross section per valence electron for Nag and
Nag , calculated with TDLDA (LDA), SIC-
TDLDA (SIC) and FULL-SIC-TDLDA (FSIC).
The experimental features are illustrated with
arrows. Horizontal arrows display the energy
interval spanned by present-day experiments [44,
45, 52], whereas vertical arrows position the
peaks which have been resolved experimentally
or for which there is tentative evidence.

Numerical details of the multi-peaked structure of the dynamical response are given
in Tab. 2. For each cluster, the position of the main peaks of the cross sections calculated
at all levels of response are tabulated, together with the experimental positions resolved
up to now. We tried to maintain the correspondence between the different peaks by
tabulating them along the same row. In some cases, we thought it more instrictive to
provide not one single peak position, but a weighted average of several (closely lying)
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Fig. 3 Same as Fig. 2 for Na,, and Naj;. We
would like to point out, however, that the energy
window resolved experimentally displays a line
shape markedly different from the line shapes
obtained for the 8 and 20 valence electron
systems. Whereas in these smaller systems the
peaks indicated correspond to pronounced

I ] humps, the line shape of Na,, is rather flat,

0 Lo with the two peaks indicated scarcely emerging

e ?5 & aa = - e\fﬁ from a rather structureless background [44].

FSIC

peaks, calculated over a small energy interval comprising them. This corresponds to the
numbers followed by stars. In this way, the numbers tabulated are semi-quantitative but
still illustrative of the detailed features of the different photoabsorption cross sections.

Figs. 1 to 3 display photoabsorption cross-sections which show, in some cases, a
multipeaked structure. Because these excitations lie somewhat below the threshold for
electron detachment, the quantum size effect leading to the breaking of the strength —
Landau fragmentation — is well understood and has been extensively discussed already
at the level of TDLDA [4, 10]. The fragmentation is due to the coupling between the
surface plasmon and discrete, bound, electron-hole excitations which occur at an
excitation energy nearly degenerate with the plasmon energy. This can be easily
confirmed by simple inspection of the unscreened cross-section (or, equivalently, the
unscreened or independent-particle dynamical polarizability), which has simple poles at
the electron-hole excitation energies. Since Landau fragmentation depends sensitively on
the quasiparticle excitation energies, it is important to have an accurate and consistent
[42] description of these. We would like to mention, in passing, that the classical formula
w? = Ne2/(ma) fails to relate the static polarizabilities with the peak positions of the
plasmon resonance even in the simplest cases, such as Nag, Nag" or Na 31, for which the
small amount of Landau fragmentation makes it most likely for the formula to work best
(Landau fragmentation, being a pure quantum size effect, is not accounted for by the
classical formula). However, s can be inferred from Tables 1 and 2, excellent agreement
for the static polarizabilities and peak positions of Nag and Nay, is obtained with
FULL-SIC-TDLDA. This, in turn, indicates that care must be exercised when attributing
this failure to an electronic effective mass different from the standard m, value [16, 46].

Common to all clusters considered here is a progressive red-shift of the whole
dynamical response from TDLDA to SICTDLDA to FULL-SIC-TDLDA. This
systematic feature leads, in turn, to a systematic improvement of the agreement between
the theoretical results and the available experimental data. Furthermore, in both SIG
responses we observe, mostly for the case of neutral species, an increase of strength in
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Table 2 Energy positions (in ¢V) of the main peaks associated with the dynamical response of {Nag,
Nag'}, (Nay,, Naj} and {Na,g, Naj;}, is given at different levels of response, namely TDLDA (under the
column £, p,), SICTDLDA (E¢;c) and FULL-SICTDLDA (Epgg,c). The experimentally resolved peaks
are given under the column Egyp. The results for the neutral clusters were extracted from Refs. [44, 45],
whereas the results for the cationic species were taken from Ref. [52]. Note that the UV part of the
spectrum is partially resolved, for Na,, in Ref. [45], in which case a small peak at =3.3 €V cannot be
ruled out. We therefore included it in the present table.

Eipa Egic Ersic Epxp
Nay Palr 2.59 2.50 252
3.28 3.28
3.58 3.54
Nag 3.02 2.92 2.78 2.62
Na,, 2.67 2.52 2.48 2.46
2.96 2.82 2.78 2.74
3.46 3.15 3.14
3.39% 3.30* 3.30
3.53 3.36
3.66 359
Naj, 2.63
2.95 2.82 2.75 2.70
3.54 3.36 3.25
3.80* 3.76*
Na, 2.58 2.37 2.35
292 2.50 2.48 2.40
3.00 2.81 2.74 2.65
3.16 2.97* 2.89*%
3.34* 3.14* 3.12%
3.6 3.29* 3.26*
Naj, 2.85 2.68 2.64
2.86
3.21 3.03 2.92
3.27 3.10 3.02
3.45 3.32* 3.19

the Ultra-Violet (UV) region of the absorption spectrum, at the “‘expense’” of the strength
in the visible region. These features can be related with electronic excitations to the loosely
bound Rydberg states which are now properly incorporated in the SIC response [35]. For
the 40 valence electron clusters, this effect is notorious. Indeed, already at the TDLDA
level there is a sizeable accumulation of strength in the UV region, which is poorly
described at this level of response. By incorporating the Rydberg states (SIC-TDLDA and
FULL-SIC-TDLDA) one observes a fragmentation of the UV strength into a series of
small peaks. The strongest peak emerges now at =2.8 €V, being red-shifted by =0.2 eV
with respect to the corresponding peak in TDLDA (cf. Table 2).

The accumulation of strength in the UV region is smaller in the cationic clusters. This
is because the orbital-dependent SIC potentials are considerably deeper than the corre-
sponding ones for the neutral partners, the overlap between the bound states and the
Rydberg states being therefore smaller for the cationic clusters.

The UV structure is found already at the SICTDLDA level. In general, from SIC-
TDLDA to FULL-SIC-TDLDA, important redistributions of strength take place, the
larger the number of valence electrons (within the sizes considered here), the more
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important the redistributions become. Indeed, while for the 8 valence electron systems one
observes similar peak structures with depletion of strength from the UV region into the
visible, for the 20 valence electron systems the UV structure is sizeably affected by the SIC
in the screening terms. Because for these systems most of the strength lies well below this
region, the net effect is a “flattening” of the response, with the UV strength shared among
several peaks. However, the SICTDLDA and FULL-SIC-TDLDA line shapes are still
similar for the 8 and 20 valence electron systems. For the 40 valence electron systems the
SIC-TDLDA and FULL-SIC-TDLDA line shapes are markedly different. Whereas theline
shape below = 2.8 eV follows the trends already discussed, major changes are observed at
higher energies between ~ 2.8 and ~ 3.5 eV. For instance, and in this energy region, the three
average peaks quoted in Table 2 have, besides distinct features in their line shapes,
associated strengths exhausting approximately 6, 10 and 8 percent of the total integrated
cross section at the SIC-TDLDA level, whereas they exhaust approximately 19, 8 and 6
percent at the FULL-SIC-TDLDA level. Finally, we would like to point out that the overall
red-shift of the response is not equal for different peaks (cf. Table 2).

A direct comparison of the line shape and line width of the photoabsorption cross
section calculated in the present work and the experimental observations is not adequate,
because of the existence of relaxation mechanisms of the plasmon resonance not
accounted for at any level of the linear response formalisms considered here and which
are responsible for its finite lifetime, as well as an associated sizeable line width of the
photoabsorption cross section. Indeed, the relaxation mechanisms pertinent to the
clusters considered in the present work have been explained to arise mostly from the
following three mechanisms [47, 38]:

1. Decay of the plasmon into incoherent electronic excitations (Landau fragmenta-
tion/damping),

2. scattering of the electron with the phonons of the lattice (resistivity),

3. coupling of the plasmon to quantal and thermal fluctuations of th surface.

The effect of these additional mechanisms (two and three, since mechanism one has
already been included) can be simulated, in an average way, by folding the calculated
cross-sections with normalized Lorentzian functions, including damping ratios resulting
from the couplings mentioned above. If, in entire analogy to what was done in Ref. [35],
this procedure is carried out, using the damping ratios obtained in Ref. [47], good
agreement is found between the folded FULL-SIC-TDLDA results and experimental data
for both Nag and Na,,. However, for the remaining clusters, the agreement is not so
good. This can already be inferred from the schematic comparison carried out in Figs. 1
to 3, from which we believe that useful information can be extracted.

The results of the electronic shell model essentially scale with the Wigner-Seitz radius
r.. This, in turn, leads one to believe that all simple metal clusters will have similar line
shapes associated with their photoabsorption profiles. Experiment shows [48] that, in
particular for the positively ionized potassium clusters, both K¢ and K3; have their line
shape dominated by one strong peak (which can be very well described with FULL-
SIC-TDLDA), in clear contrast with the sodium case considered in the present paper.
Therefore, one can expect that the ionic structure will contribute to perturb the purely
electronic features described in the present work. In this context, notice that the
experimentally observed “lattice shrinkage” effect [49] (for copper clusters) seems to
indicate that the bulk value used in the present work for r; is not realistic. On the other
hand, the polarizability measurements of Ref. [41] show no indication of this. Whereas
the “lattice shrinkage” effect can be simply understood as a surface-to-volume ratio
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effect, this issue remains at present an open and rather disturbing problem. Indeed, we are
not aware of any careful study of the variation of the bond length with cluster size and
jonization state. It is natural to expect that the bond length between neighbouring Sodium
atoms will be different in, e.g., Na,, and Naj;, due to the different net electrostatic
balance between electrons and ions, a feature which is not accounted for within the jellium
model. This, together with a different overall geometric structure, may lead to different
jonic contributions to the single-particle potentials. Preliminary results [50], as well as
phenomenological work aiming at mimicking the ionic structure [16, 17], do point in this
direction. In particular, we believe that the perturbations caused by the ionic structure will
be responsible for the small (=0.07) splitting of the plasmon peak in Na;. Moreover, it
may act to perturb further the photoresponse of Nay, so as to break up the FULL-
SICTDLDA peak at 2.74 eV, providing an additional red-shift for part of thispeak and also
additional flattening of the resulting line shape. Work along these lines is in progress,
aiming at introducing a workable, yet predictive theory of the ionic structure [50].

4 Conclusions

A new formulation of linear response theory has been introduced, which includes SIC
both in the ground state and in the screened interaction. It has been applied to sodium
clusters of different sizes and in different ionization states, namely {Nag, Nag'}), (Nay,
Naj;} and {Nayy, Naj;}. The results, when compared with the previous forms of linear
response, show a systematic improvement and, to date, the best overall agreement with
the available experimental data, for all clusters considered, without making use of any
adjustable parameters. Furthermore, the results of the present work, in particular the
difficulties in accounting simultaneously for the features of the neutral and cationic line
shapes, enable us to infer the magnitude and type of effects to be expected from the
inclusion of the discrete ionic structure, which has been ignored in the present electronic
shell model.

Finally, we would like to point out that the formalism developed in this work satisfies
basic theorems and properties to be expected from a DFT [14], leading to potentials
which display the appropriate asymptotic behaviour [35] expected from general finite,
many-electron systems. This opens the possibility to study previously intractable systemns
(at the level of TDLDA), such as the dynamical response of anions and anionic clusters.
Work along these lines is under way.

5 Appendix

In this appendix we list the relevant expressions concerning the solution of the FULL-
SICTDLDA problem in spherical coordinates.
We write, for the wave functions §{(r),

() = RG) () YUY, (22)

where R{) ;(r) are the solutions of the radial version of Eq. (3) and Y7V (F) are the usual
spherical harmonics. As usual, and due to the fact that all orbitals are fully occupied,
the density 7(r) depends only on the radial coordinate, the same happening with the
potential Vg (r) in Eq. (3). We consider also the spherical harmonic decomposition of
G(r, ry, E) and x,(r, ry; @) which, due to the rotational invariance of the system, can

be written:
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G s By = ); Y¥(F) G, ry, E) Yi(F) ,

Zo(r, Ty, @) = ZI} YF(F) xoi(r ry, @) Yi(F) .

Eq. (15) may be written in the form

(r —ry)

[E ot B g B L) ?Sﬂc(r)} G/ i, E) = —5-7— 23

r> 9r or r?

The sign of the imaginary part in Eq. (11) determines the boundary conditions to be
imposed on the solution of the above equation. Denoting by j,(r, E) the solution of the
homogeneous version of the above equation which is regular at the origin and denoting
by h;(r, E) the solution which behaves asymptotically as an outgoing wave, we can
construct the Green’s function in the following way [51]:

G{(E rl,E) — Jl(r<sE)hI(r>!E)

24
[P Li(r) hi(r) = ji(r) h(r)],=a =

where ¢ is an arbitrary constant (in the sense that the denominator (Wronskian) is
independent of @), r and r. being, respectively, the smaller and larger of {r, ry}.

The spherical harmonic decomposition of fo (r, r;, w) leads to the following expres-
sion for its /-~component:

- OCE
X 1y, @) = ) AP 1y, w)
1

= (fﬂi R(,,f),(r) R,(,f);(r,)
27 o v

i

winlb i) a,_,apa;_p, 25;+21—4k+1
k=0 afr.+n'*k 21,"' 21_2k+1

X [Gyyroak® 1y, €2, + w) + c.c. o~ —o]] . (25)

In the above equation, a;, = 2k — 1)!1/k!. For a given external perturbation of multi-
polarity / as defined in Eq. (6), and once the A, r;, w) have been constructed, the
linearly induced density is given by the solution of the following set of equations,

0ifr w) = | drirf AP ry, @) + Pideen(rs, @)1, (26)
0

where VY .. (r(, @) reads

AV [n(ry)]

V(sic)rcen (I’ 1 Cf)) —
an

[0n(r, w) — 5ﬁ(f)(71, w)]

2
o

4me? T rt _ e
5 er'r% I< [511(!’2, CU) - Jn(r}(rZ’ CU)] .

21+ 1 3 plLr

There are as many equations as occupied orbitals, which are coupled via the definition

of 87(r, ), BEq. (18).



268

Ann. Physik 1 (1992)

References

(1]
(2]
(31

[4]
[5]
6]

(7]
(8]

9

[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]

[24]
[25]

[26]
[27]
[28]

W. Ekardt, Phys. Rev. B29 (1984) 1558

W. D. Knight et al., Phys. Rev. Lett. 52 (1984) 2141

M. I. Stott, E. Zaremba, Phys. Rev. A21 (1980) 12; Phys. Rev. A22 (1980) 2293; A. Zangwill,
P. Soven, Phys. Rev. B21 (1980) 1561; G. D. Mahan, Phys. Rev. A22 (1980) 1780

W. Ekardt, Phys. Rev. Lett. 52 (1984) 1925; Phys. Rev. B31 (1985) 6360

W. de Heer et al., Phys. Rev. Lett. 59 (1987) 1805

Risking some serious omissions, this is an attempt at a representative view of recent experiments:
K. Selby et al., Phys. Rev. B40 (1989) 5417; C. R. C. Wang et al., Z. Phys. D19 (1991) 13; H.
Fallgren, T. P. Martin, Chem. Phys. Lett. 168 (1990) 233; C. Bréchignac et al., Chem. Phys. Lett.
164 (1989) 433; J. Blanc et al., Z. Phys. D19 (1991) 7; K. Selby et al., Phys. Rev. B43 (1991) 4565;
J. Tiggesbdumker et al., to be published

V. B. Koutecky et al., Chem. Rev. 91 (1991) 1035 and references therein by the same group

In the quantum-molecular methods [7] optical excitations are computed including electron
correlations within a truncated part of the subspace including double-pair eleciron-hole
excitations. This is formally different from the TDLDA approach which considers, besides the
electron correlation effects already included in the exchange-correlation functional, the
correlations obtained by including the full subspace of single-pair electron-hole excitations
References in this entry by no means exhaust the whole bulk of calculations available at present.
W. Ekardt, Phys. Rev. B32 (1985) 1961; D. E. Beck, Phys. Rev. B30 (1984) 6935; Phys. Rev. B35
(1987) 7325; Phys. Rev. B43 (1991) 7301; M. J. Puska et al., Phys. Rev. B31 (1985) 3486; Phys. Rev.
B33 (1985) 4289; M. Brack, Phys. Rev. B39 (1989) 3533; C. Yannouleas et al., Phys. Rev. Lett. B63
(1989) 255; Phys. Rev. B41 (1990) 6088; Phys. Rev. A44 (1991) 5901; R. A. Broglia et al., Phys.
Rev. B44 (1991) 5901; S. Saito et al., Phys. Rev. B42 (1990) 7391

C. Yannouleas, R. A. Broglia, “Landau Damping and Wall Dissipation in Large Metal Clusters”,
preprint

W. Ekardt, J. M. Pacheco, to be published

This, in turn may be a temperature dependent effect. Indeed, preliminary experimental results do
not rule out that electronic shell structure may dominate at high temperatures, whereas atomic
shells may interfere at low temperatures [13]

T. P. Martin et al., Chem. Phys. Lett. 186 (1991) 53

J. P. Perdew, A. Zunger, Phys. Rev. B23 (1981) 5048

M. Iniguez et al., Z. Phys. D11 (1989) 163

C. Yannouleas, R. A. Broglia, Europhys. Lett. 15 (1991) 843

A. Rubio et al., to be published

Similar trends are expected in deformed clusters [19, 20], this case being presently under study
W. Ekardt, Z. Penzar, Phys. Rev. B38 (1988) 4273

U. Rothlisberger, W. Andreoni, J. Chem. Phys. 94 (1991) 8129; contribution to the 88. WE-
Heraeus-Seminar on “Nuclear Physics Concepts in Atomic and Cluster Physics”, Bad-Honef,
Germany, November 1991

P. Sheng et al., Phys. Rev. B34 (1986) 732

We would like to point out that these LDA, self-interacting calculations show excellent agreement
for the fully relaxed structures with the results of the quantum molecular calculations [7] for the
smallest sizes. However, unresolved discrepancies between the geometrical structures obtained with
the 2 methods persist for the larger sizes

Both calculations were performed within the LDA neglecting SIC. SIC was later incorporated in
the self-consistent spheroidal jellium model of Ref. [19] to calculate gound state properties of small
metallic clusters [24]

7. Penzar, W. Ekardt, Z. Phys. D17 (1990) 69

Contribution of K. Bowen to the 88. WE-Heraeus-Seminar on ‘“Nuclear Physics Concepts in
Atomic and Cluster Physics”, Bad-Honef, Germany, November 1991

K. Clemenger, Phys. Rev. B32 (1985) 1359

O. Gunnarsson, B. 1. Lundqvist, Phys. Rev. B13 (1976) 4274

The SIC corrections lead to an orbital dependent potential, which in turn leads to eigenfunctions
which are not orthogonal. This problem is easily overcome by orthonormalizing the wave functions
at each cycle of the self-consistent iteration scheme, and was adopted in all calculations reported
in this paper



J. M. Pacheco, W. Eckardt, Response of small metal clusters 269

[29]

(30]
[31]

[32]

[33]
[34]
[35]
[36]

37

(38]
[39]
[40]

[41]
142]

[43]
[44]
[45]
[46]
[47]

[48]
[49]
[50]
(511
[52]

Indirect support is provided by the calculation of the quasiparticle energies of small sodium and
potassium clusters in the so-called GW approximation {30]. The results of this approximation lead
to quasiparticle energies and wave functions in good agreement with our ground-state results

S. Saito et al., Phys. Rev. B40 (1989) 3643; J. Phys.: Condens. Matter 2 (1990) 9041

In all numerical calculations carried out in this paper, § was given a numerical value of 10 meV,
to avoid divergences at the poles of the Green’s functions. This “numerical damping” is responsible
for the very small line width displayed by the photoabsorption peaks of Figs. 1 to 3

In general, the functional derivative in Eq. (12) leads to a non-local term in the screening potential.
We keep the standard approximation of replacing this term by the local term 3 V, . [n(r)]/3n & n (x).
Furthermore we neglect any time dependence in this term (static approximation). This has been
estimated to constitute a very good approximation [33]

E. K. U. Gross, W. Kohn, Phys. Rev. Lett. 55 (1985) 2850

W. J. Hunt, W. A. Goddard, Chem. Phys. Lett. 3 (1969) 414

J. M. Pacheco, W, Ekardt, to be published

J. M. Pacheco, W. Ekardt, in: Physics and Chemistry of Finite Systems: From Clusters to Crystals,
to be published in NATO Advanced Study Institute Series B: Physics, P. Jena, B. K. Rao,
S. N. Khanna (eds.), Plenum Press, New York 1991

P. Stampfli, K. H. Bennemann, in: Physics and Chemistry of Small Clusters, vol. 158 of NATO
Advanced Study Institute Series B: Physics, P. Jena, B. K. Rao, S. N. Khanna (eds.), Plenum, New
York 1987, p. 473

W. Ekardt, Z. Penzar, Phys. Rev. B43 (1991) 1322

M. Bernath et al., Phys. Lett, 156 (1991) 307

Indeed, it was already found in Ref. [30] that the overlap between the quasiparticle wave functions
(calculated in the GW approximation) and the LDA Kohn-Sham eigenfunctions is in all cases very
close to 1. Similar results are obtained (as expected), when SIC is performed on LDA

W. D. Knight et al., Phys. Rev. B31 (1985) 2539

We would like to stress that it is very important to carry out the SIC correction consistently. As an
example, note that the authors of Ref. [43] computed photoabsorption cross-sections in an
approximate SIC response formalism in which all orbitals are SIC in the same way. This, in turn,
leads to a poor description of the quasiparticle energies (we checked that this scheme leads to
unsystematic deviations of as much as 0.5 €V between their quasiparticle energies and ours — or
for that sake, the ones obtained with the GW approximation [30]) and to cross-sections for the
magic clusters with many isolated peaks, which is not supported by the available experimental data
[44, 45]

S. Saito et al., Phys. Rev. B43 (1991) 6804

K. Selby et al., (1991) in Ref. [6]

S. Pollack et al., J. Chem. Phys. 94 (1991) 2496

J. Blanc et al., J. Chem. Phys., in press

J. M. Pacheco, R. A. Broglia, Phys. Rev. Lett. 62 (1980) 1400; G. F. Bertsch, D. Tomdnek, Phys.
Rev. B40 (1989) 2749, C. Yannouleas et al., Phys. Rev. B41 (1990) 6088; J. M. Pacheco et al.,
Z. Phys. D21 (1991) 289

C. Bréchignac et al., Chem. Phys. Lett. 164 (1989) 433

G. Apai et al., Phys. Rev. Lett. 43 (1979) 165

W. D. Schéne, W. Ekardt, J. M. Pacheco, in preparation

See, for example, G. Arfken, Mathematical methods for Physicists, 3rd ed., Academic Press, 1985
C. Bréchignac et al., Chem. Phys. Lett (in press)



