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The nonretarded van der Waals coeflicients Cg and Cg are determined for all pairs of
neutral sodium and potassium microclusters with 1, 2, 8 and 20 atoms. The spherical
jellium approximation is used to replace their ionic cores, and the valence electrons are
treated in the local density approximation of density functional theory. The dynamical
polarizabilities of these systems are computed making use of three different methods,
two microscopic and guantum mechanical linear response formulations and one classi-
cal. It is found that quantum size effects, in particular Landau fragmentation, play a
crucial role in the determination of these coefficients. Furthermore, we find that self-
interaction errors present in standard microscopic approximations lead to sizeable effects
in the strength of the van der Waals coeflicients. On the other hand, we find that the
vibrational temperature of these clusters has a very small effect in the van der Waals in-
teraction which can be disregarded within the range of temperatures presently reachable
experimentally.

1. Introduction

The van der Waals (dispersion) forces are present in the interaction between all
kinds of atoms, molecules and surfaces. They play a very important role in many
diverse areas of pure and applied science such as adhesion, surface tension, phys—.
ical adsorption, flocculation or aggregation of particles in aqueous solutions, the
structure condensed macromolecules such as proteins and polymers, etc. (see, e.g.
Refs. 1, 2 and general references therein). Being typically relevant at large in-
teratomic or intermolecular separations (= 10 nm), still may play an important
role down to distances of the order of few atomic radii (where many-body effects
due to overlap of atomic densities begin to dominate the features of interatomic
and intermolecular interactions) determining, in some cases, relative intermolecular

orientation or inducing molecular rotational transitions.®

PACS Nos.: 36.40.4d, 31.50.+w, 33.20.K{.



With the recent synthesis of new, gas-borne, ultra-fine particles®® and of new
forms of bulk matter,>? the van der Waals interaction is expected to become of
extreme importance in the description of cluster-cluster collisions®!! and associated
12 as well as in the characterization of
relative orientation of clusters in bulk matter.!®' In what concerns these issues,
most of the theoretical work devoted to the study of the van der Waals interaction
between small metallic particles has been carried out using classical electrodynamics
to describe their dynamic polarizabilities (cf., however, Ref. 15). It is by now
established, however, that Quantum Size Effects (QSE) play a crucial role in many
properties of these small metallic particles (also in what concerns their dynamical
polarizability) a feature which, being absent in the classical treatment requires, per
se, a quantum mechanical formulation.

growth of atomic and molecular clusters,

In this paper, we shall compute the leading order coefficients Cs and Cj of the
van der Waals interaction between pairs of neutral microclusters of alkali atoms.
These coefficients, as we shall discuss in the next section, constitute essential in-
gredients necessary to fully characterize the above mentioned interaction. We shall
consider sodium and potassium, and compute the interaction coeflicients between
all pairs of sodium and potassium “magic” clusters with 1, 2, 8 and 20 constituent
atoms. We make use of the Spherical Jellium Uniform Background Model (SJUBM)
and of Density Functional Theory (DFT) in the Local Density Approximation
(LDA)'® for the description of the Ground State (GS) properties of sodium and
potassium clusters, and linear response theory for the calculation of the dynamic
polarizabilities. We shall consider two different levels of calculation of the prop-
erties of these microclusters: The standard LDA calculation, and the associated
Time Dependent LDA (TDLDA) linear response formulation,'”'® and also we shall
compute the dynamic polarizabilities implementing the Self-Interaction Corrections
(SIC) both at the level of the ground state in the way proposed by Perdew and
Zunger!® called SIC-LDA and at the level of linear response in the formulation de-
veloped recently by the authors?® entitled FULL-SIC-TDLDA. This is due to the
fact that it has been shown recently?®:2! that the self-interaction errors present in
the standard LDA and TDLDA formulations lead to sizeable consequences in the
computation of the static and dynamic polarizabilities of alkali microclusters (this
result applies, generally, to all finite many-electron systems). Both formulations
are fully self-consistent. This is by now recognized as a necessary feature of any
microscopic calculation aiming at producing reliable QSE.?? These, in turn, will
be shown to play a crucial role also in the determination of the van der Waals
coefficients. Furthermore, the classical plasmon-pole approximation, which leads
to analytical expressions for the van der Waals coefficients, will be also considered
in the present paper. A preliminary account of some of these results has been
published elsewhere.??

This paper is organized as follows: In Sec. 2 the formalism is presented and
the microscopic formulations we use reviewed. Furthermore, the (analytic) results
of the classical plasmon-pole approximation will be reviewed as well. Section 3 is



Briefi Reviews

The Van Der Waals Interaction Between Alkali Microclusters 575

devoted to the presentation and discussion of the results obtained and their expected
accuracy, as well as to the discussion of the influence of other effects such as the
vibrational temperature of the intervening clusters. Section 4 contains the main
conclusions and future prospects.

2. Formalism

The nonretarded electrostatic interaction energy between two clusters A and B,
at a distance R large enough so that their charge densities do not overlap, can be

written in the form,?
C{P  Cc¢P
AE:‘—'F—"R_B'"‘"'. (1)

In this way one formally singles out the distance dependence of the interaction
energy, in the traditional power expansion. In general however, the coefficients
C{#P carry information on the species A and B involved, the detailed features of
their electronic response and on the relative orientation of the two clusters. This is
because they can be generally expressed in terms of the polarizabilities of the inter-
vening clusters which, being second rank tensors, lead eventually to rather lengthy
expressions. This situation is greatly simplified when the intervening clusters are
spherical. This will be the case for all clusters considered in this paper, to which
the spherical approximation has proven very successful. For spherically symmetric
objects, angular momentum is a good quantum number and a multipole decompo-
sition of the dynamic polarizabilities is appropriate. In such conditions, the van

d,24'25

der Waals coeflicients can be expresse making use of the dynamic multipole

polarizabilities az(w), by

Cif =C(A1;B,1), G = C(A,1;B,2) + C(4,2; B,1) (2)
with
_ 2Ly 4 2Ly) [t 4
C(A,L1; B, L) = Wz(ng)!(QLg)!]G dor mler, (1)
+o00 dw, B :
x‘/g TR Im[a7, (w2)] , (3)

In the above equation, Im[af (w)] stands for the imaginary part of the dynamic
polarizability « of cluster K (K = A, B) and multipolarity L, evaluated at the
real frequency w. It is then clear that C#® results from the dipole-dipole inter-
action between clusters A and B, C4® results from the dipole-quadrupole inter-
action between these two clusters, etc. Since the determination of the van der
Waals coeflicients requires the calculation of the dynamic multipole polarizabilities
of the different clusters, which are proportional to the electronic response of the
cluster to an external perturbation of multipolarity L, the properties of these coeffi-
cients will depend cruciallv on the detailed features of the electronic response. It is
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worth mentioning that the above expression, Eq. (3), is written in a non-standard
fahion. Indeed, it 1s common practice to write down the interaction coefficients
C(A, Ly; B, Ly) in terms of the polarizability computed at an imaginary frequency
tu, which 1s a real function of u. In terms of these quantities, Eq. (3) reads, then,

+o0
C(A, Ly B, L) = 2%23%‘2;1 /0 duod (iwad (iu) . (4)

These are two equivalent ways of calculating the same quantity and are obtained
by direct substitution of the definition of the polarizability in the standard result of
second order perturbation theory (for a general proof, cf. Ref. 24). However, since
Im[of (w)] is directly related to the photoabsorption cross-section (which can be
measured experimentally), we shall perform our calculations making use of Eq. (3).

In the remaining part of this section, we shall critically review the microscopic
determination of the dipole (L = 1) and quadrupole (L = 2) dynamic polarizabilities
of neutral sodium and potassium clusters with 1, 2, 8 and 20 atoms.

Within the jellium model, the rigid (positively charged) background, which
crudely replaces the ionic structure of the microclusters, is unpolarizable, providing
solely an external potential under the influence of which the valence electrons of
each constituent atom of the microcluster move. Therefore, all contributions to the
polarizability of the cluster arises from their electronic degrees of freedom.

The LDA description of alkali microclusters within the jellium model has been
extremely successful in providing a simple yet accurate (to within 15%) understand-
ing of many GS and response properties of sp-bonded metal clusters. It was making
use of the jellium model plus LDA that the shell structure of these small aggregates
of alkali atoms has been theoretically predicted.!® Furthermore, the jellium model
constitutes, at present, the only workable framework which can provide results for
clusters over a wide range of atomic constituents, providing unique information
on a novel field of physics which is able to bridge the gap between a single atom
and a piece of bulk metal. However, with the recent availability of new experi-
mental information, the flaws of the jellium model and LDA have become more
prominent, and improvements of the LDA have been sought. This is because the
comparison of LDA calculations incorporating the ionic degrees of freedom with
corresponding calculations making use of the jellium approximation show that the
jellium model works very well.?® Of the different improvements of the LDA which
have been developed, and to our knowledge the only one which preserves the es-
sential features of self-consistency and linearity which constitute the benchmark of
the success of LDA and TDLDA, has been the FULL-SIC-TDLDA .2° Furthermore
this formulation, when applied to the computation of response properties of metal
microclusters, provides the best overall agreement obtained so-far between the the-
oretical and experimental photoabsorption features of both neutral and charged
alkali microclusters.?’ On the foregoing, we shall review briefly the underlying fea-
tures pertaining to all of these formulations, as well as to the classical plasmon-pole
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approximation which, though lacking any QSE, leads to simple analytic results for
the van der Waals coeflicients.

To describe the GS of a cluster with R ions and N valence electrons, in the LDA,
we start by solving the Kohn—-Sham equations,
—h?
S A+ VMF(r)] ¥;(r) = gj;(r) , (5)

2m

where the LDA mean-field (MF) potential reads,

2 n(l’.‘]_)dl‘l
e — 1|

N
Vmr(r) = Vi(x) + e + Vieln(x)], n(x)= Z [ ()]* . (6)
j=1
Vi(r) is the jellium potential of R positive ions; %;(r) represents the eigenfunction
with quantum number 7, and &; is the corresponding eigenvalue. V. is the LDA for
Exchange and Correlation (XC) for which we use the parametrization of Gunnarsson
and Lundqvist.?” As is clear from the above definition of the average potential, each
electron interacts with itself spuriously via the construction of the total electronic
potential by means of the fotal density. The SIC attempts at correcting for this
deficiency in the average potential, by replacing the above scheme by a similar one,
in which a set of Kohn—-Sham-like equations is still solved, but now with an orbital
dependent potential:

—h? ~ (3 = (3 i) 7(
[-ia + Véié(r)] 300 =890, (M)

2m
where ﬁ’s(;(): is related to Vur by,
) = Vaw(@) - ¢ [

To make the notation unambiguous, we redefined the eigenfunctions and eigenval-
ues, such that gb?)(r) represents the eigenfunction of orbital potential S(;(}j with

’ﬁ,‘(r]_ )dl’l
v — 1|

— Vieli(®)], () = [$O@)P . (8)

quantum numbers j, and égi) the corresponding eigenvalue. Furthermore, we shall
consistently denote by X a given self-interacting quantity and by X the correspond-
ing quantity in the SIC case. In this notation the total density appearing in Viyy 1s
now defined as?® '

i(e) = 3PP (9)

We would like to point out that, contrary to the self-interacting case, in which the
Kohn-Sham eigenvalues and eigenfunctions have no direct relation to the quasipar-
ticle energies and wave functions of the cluster, the SIC-LDA solutions constitute
good candidates for the representation of these quantities.!®

We shall consider now the general theory of linear response to an external per-
turbation, starting with the self-interacting case (TDLDA) and including the SIC
later.



Under the action of an external, time-dependent perturbation of the form
Vet (r) = —rL Pp(cos 6) cos(wt) , (10)

the valence electrons will respond, to zero order, independently. The independent
particle induced density will oscillate in phase with the external perturbation, its
single Fourier component being given by

éno(r,w) = /dr]Xo(I‘,h;w)Vext(l‘l,w) ; (11)

where the independent particle susceptibility can be written in the form,

ocC

(r,r;w) = Zv,b J¥i(r1)G(x, vy, €5+ fw) + 4 ()] (v1) G (x,v1, 65 — Fw) . (12)

In the above equation, (G is the retarded Green’s function associated with the LDA
Schrodinger-type equation,

hB
F4+ —A - VMF (I‘)

7 G(r,r1, E)=6(r — 1) . (13)

Note that each Green’s function includes all possible single-electron excitations from
a specific orbital, including transitions which are forbidden by the Pauli principle.
These, however, are exactly cancelled by the combination of Green’s functions in
Eq. (12) (for details, cf. Ref. 20).

As 1s well known, the independent particle approximation overestimates the
response of the system to an external perturbation. This is because the screening
of the external perturbation due to the induced density is not taken into account.
In linear response, one includes this field by requiring a self-consistency condition
between the induced density and the screening potential. Denoting the linearly
induced density by én and expanding the potential in Eq. (6) keeping only the
linear terms we get,

dn(ri,w)dr;  §Vic[n(r)]
_I_
|r —rq| on

I'/scr'een(r';‘-'-’) = 62/ 5?1(1‘,&)) : (14)

The linear response equation for én reads, then,

6”(1':"""') — fdrlXU(r:rl;w)[Vext(rl:w) + I/screen(rl)w)] : (15)

This equation, together with the definition of Vicreen, Eq. (14), constitute the
TDLDA equations for the induced density. We proceed now by correcting this
formulation including SIC.
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Since, in SIC-LDA, the single-particle potentials are orbital dependent, the in-
dependent particle susceptibility is conveniently rewritten as

occ

To(e,150) = YA GO ) GO, 10,20+ )

acc

+ 3 B (01) GO (11,60 — o)

0cC

= Zﬁ(i)(r,rl,w) : (16)

The (orbital dependent) Green’s functions G(*) are now related to the solution of
the following equation

?—2 ~ (3 s
{E +omB Vs%é(ﬂ] GO (r,x1, E) = 6(x — 1) (17)

by

3 P ) ()

7 & o - s

é(i)(r; I, EES) '+' h&)) = [é(i)(r’ ry, 553) + hw) - (18)

The physics associated with the above equations is quite simple. Because the po-
tential is orbital dependent, the transitions from a given occupied state should
be computed with the potential appropriate for this state. G() is obtained from
GG through Eq. (18). The additional-terms explicitly avoid any violation of the
Pauli principle, since in the SIC case, the Pauli-forbidden upward transitions orig-
inate from a different potential than the corresponding Pauli-forbidden downward
transitions.2°

We proceed now to correct for the self-interaction errors in the screening poten-
tial. From the definition of Vicreen in Eq. (14) it is clear that there is a spurious
self-interaction due to the fact that this potential is calculated with the total in-
duced density. The appropriate screening term to incorporate in a self-interaction
free theory is an orbital dependent screening which reads (cf. Eq. (14) and Ref. 20),

~ Ai(ry,w) — 67 (ry, w)]dr, el B s (i
Pt =  BRE LT N | Pl 50,) 570 (e,
(19)

where 6:&(")(1*) are now the orbital contributions to the total SIC screened induced
density

§ii(r, w) = E 57 (x,w) . (20)
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Equation (20) together with Egs. (16) and (19) enable us to write now a system
of coupled equations (as many as the number of occupied orbitals) constituting the
FULL-SIC-TDLDA equations:

5?1(5)(1‘,&)) = /drlﬂ(i)(rsrl:w)[%xt(rlﬁw) + Vursgr}een(rl?w)} g (21)

The general solution for 4# is non-trivial, even at the TDLDA level, and has in
this case been carried out only for a restricted class of geometries of the jellium
backgrounds.'®?? When the number of valence electrons corresponds to a “magic
number” (as is the case for all clusters considered in this work) a spherical shape
of the jellium background gives the appropriate choice, the N electrons filling com-
pletely a given number of spherical electronic shells. Angular momentum is therefore
a good quantum number, and the problem is best solved in spherical coordinates.
Moreover, the response to an external field of well defined multipolarity is diago-
nal in L and the polarizability of multipolarity L is related to the L-component
énr(r,w), being written as,
47

2L+ 1

Finally, we would like to introduce the classical plasmon-pole approximation,
and its analytic results for the dynamic polarizability. In this approximation all

the strength of the multipole response is concentrated in a single peak, and we may
write!® (K = A, B),

ap(w) = —e?

400
/ dr rX 280y (r,w) . (22)
0

?r
tmfoff ()] = 2wk K60 —of) | (23)
with
L
wf:def:UgL_i_lw;{ ; (24)
and
Rg =7, kRS | (25)

where r; x the Wigner-Seitz radius of cluster species K in atomic units (4 for sodium
and 4.86 for potassium) and X the number of ions in the cluster. w;{ is the plasma
frequency n the bulk and is given by,

—3/2
hwk = [47.1 eV]r 37 (26)

With the above representation for the polarizability, the van der Waals coef-
ficients can be obtained by analytic integration of Eq. (3) leading to the follow-

ing expressions for the general interaction between clusters of arbitrary species A
and B:

3 QJALUB
C 2, 3d PP
6 Z(RARB) lw;}—l—wf 3
15 Ry &,
= —(RaRp)*wfwPdid » v
Cs = 1 (RaRp)wyw, didy diwf + dywB  dywl + diw?
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Fig. 1. Imaginary part of the dynamic polarizabilities of sodium and potassium atoms. Left
columm contains results for the dipole polarizabilities (L = 1) whereas the right column contains
the quadrupole polarizabilities (L = 2). Parts a), b), c), and d) contain results for sodium, the
remaining 4 curves corresponding to potassium. Parts a), b), e), and f) display results obtained
making use of the TDLDA, whereas the remaining parts contain results using the FULL-SIC-
TDLDA. The polarizabilities are plotted in dimensionless units since, for each part, they have
been divided by RgL-l'l), where L is the multipolarity and Ry is given by Eq. (25). In each part,
the vertical arrow indicates the (size independent, cf. Eq. (24)) position of the single plasmon peak
in the plasmon-pole approximation.

3. Results and Discussion

We determined the dipole (I = 1) and quadrupole (L = 2) dynamic polarizabil-
ities of neutral sodium and potassium clusters, with 1, 2, 8, and 20 constituent
atoms. We used the SJUBM with the LDA and SIC-LDA for the description of
the GS properties of the clusters, the determination of the screened electronic mul-
tipole response3? being computed in both TDLDA and FULL-SIC-TDLDA. The
corresponding results are shown in Figs. 1 to 4. Each figure concerns one specific
number of atomic constituents, namely: Fig. 1 shows results for the atom, Fig. 2
for the dimer, etc. in ascending order of atomic constituents. Each of the figures
contains eight parts, arranged in four lines and two columns. Each left column
contains the dipole response whereas each right column contains the quadrupole
response. The first two lines of each figure display the results for sodium, whereas
the last two lines display the results for potassium. Finally, parts a), b), e) and
f), show the TDLDA results, whereas parts c), d), g) and h) show the FULL-SIC-
TDLDA results. In all figures, vertical arrows indicate the (size independent) peak
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Fig. 2. Imaginary part of the dynamic polarizabilities of sodium and potassium clusters with 2
constituent atoms (same conventions and notation as in Fig. 1).

position of the dynamic multipole polarizabilities calculated in the plasmon-pole
approximation. As becomes clear from Figs. 1 to 4, there are large differences be-
tween the results of the microscopic calculations and the classical approximation,
which will reflect upon the calculated values for the Cs and Cg coefficients. In-
deed, the microscopic responses evidence an overall redshift with respect to their
classical counterpart, and also a sizeable amount of Landau fragmentation, leading
to the multi-peaked structures displayed in the figures. Both QSE have been de-
tected experimentally (for L = 1) by measuring the photoabsorption cross section
of these small metallic systems,®’ which clearly indicates that the plasmon-pole
approximation is inadequate for describing the response of small clusters.

As compared to the TDLDA, the FULL-SIC-TDLDA dipole polarizabilities show
a further red-shift of the main plasmon peak (except for the atoms and the L = 2
mode of the dimers), a feature which correlates systematically with the available
experimental evidence. Furthermore, it predicts the occurrence of extra structure
in the ultra-violet part of the spectrum, which still waits for an unambiguous exper-
imental confirmation. This feature, however, correlates well with the well-known
problem of the missing strength in the experimental data.3! In this way, one can
expect further differences between the van der Waals coefficients obtained making
use of the TDLDA and the FULL-SIC-TDLDA dynamic polarizabilities. In keeping
with this discussion one expects, therefore, the FULL-SIC-TDLDA results to be the
most accurate of all results presented in this paper.
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Fig. 3. Imaginary part of the dynamic polarizabilities of sodium and potassium clusters with 8

constituent atoms (same conventions and notation as in Fig. 1).
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Fig. 4. Imaginary part of the dynamic polarizabilities of sodium and potassium clusters with 20
constituent atoms (same conventions and notation as in Fig. 1).
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Table 1. Values for the van der Waals coefficient Cg (in eV af) for the pair interaction between
sodium clsuters with 1, 2, 8, and 20 constituent atoms. For each entry, the first line gives the values
calculated making use of the FULL-SIC-TDLDA, the second line the values calculated via TDLDA
and the third line the classical result obtained making use of the plasmon pole approximation (see
main text). The numbers follow the notation: 2.49(4) = 2.49 10%.

N 1 2 8 20

2.32(4)  4.75(4)  1.82(5)  4.23(5)
1 249(4)  4.21(4)  1.64(5) 3.93(5)
1.04(4)  2.09(4)  8.35(4)  2.09(5)

9.74(4)  3.73(5)  8.67(5)
2 7.12(4)  2.78(5)  6.66(5)
4.18(4)  1.67(5)  4.18(5)

1.43(6)  3.32(6)
8 1.09(6)  2.60(6)
6.68(5)  1.67(6)

7.73(6)
20 6.22(6)
4.18(6)

Table 2. Values for the van der Waals coefficient Cy (in eV a,g} for the pair interaction between
sodium clusters with 1, 2, 8, and 20 constituent atoms (same conventions and notation as in

Table 1).

N 1 2 8 20

1.75(6)  4.09(6)  3.55(7)  1.51(8)
1 1.88(6) 3.97(6) 3.33(7) 1.38(8)
8.73(5)  2.26(6) 1.75(7)  7.31(7)

9.42(6) 7.67(7)  3.19(8)
2 8.08(6) 6.17(7)  2.47(8)
5.55(6)  3.90(7)  1.56(8)

4.50(8)  1.58(9)
8 3.59(8)  1.25(9)
2.24(8)  7.94(8)

4.93(9)
20 3.92(9)
2.57(9)
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Table 3. Values for the van der Waals coefficient Cg (in eV ag) for the pair interaction between

potassium clusters with 1, 2, 8, and 20 constituent atoms (same conventions and notation as in
Table 1).

N 1 2 8 20

4.57(4)  9.96(4) 3.81(5)  8.93(5)
1 5.80(4)  9.96(4)  3.70(5)  8.62(5)
2.51(4)  5.02(4) 2.01(5)  5.02(5)

2.17(5)  8.30(5)  1.95(6)
2 1.71(5)  6.37(5)  1.49(6)
1.00(5)  4.01(5)  1.00(6)

3.18(6)  7.45(6)
8 2.37(6)  5.52(6)
1.60(6)  4.01(6)

1.75(7)
20 1.29(7)
1.00(7)

Once the dynamic polarizabilities have been determined, the van der Waals
coefficients are obtained by direct integration of Eq. (3). The results are given in
Tables 1-6. Tables 1-4 consider the van der Waals coefficients for the interaction
between clusters of the same species namely, sodium (Tables 1 and 2) and potassium
(Tables 3 and 4) whereas Tables 5 and 6 contain the values relative to the inter-
action between a sodium and a potassium cluster. The values quoted are all in eV a§
for the Cg coefficient, and eVa§ for the Cy coefficient. Tables 1, 3 and 5 contain
values for Cs while Tables 2, 4 and 6 contain values for Cs. For each entry in any
table, three numbers are given. The upper value corresponds to the one we expect to
be most accurate, namely, the FULL-SIC-TDLDA value. In the middle, the TDLDA
result is presented and in the bottom the classical result is tabulated. As is clear
already from the figures, the classical description of the dynamic polarizabilities is,
in most cases, quite unrealistic. Therefore, the discrepancies between the classical
and the quantum mechanical results tabulated are of no surprise. On the other hand,
the discrepancies between the values of the van der Waals coefficients obtained
with the two quantum mechanical methods are due to the sizeable effect of the
self-interaction errors present in the LDA, and, to a large extent, eliminated in
the FULL-SIC-TDLDA. Since these errors are larger the smaller the system, the
deviations are not systematic, and it is difficult to characterize them in general
terms. For the larger clusters (N > 2), the coefficients obtained with FULL-SIC-
TDLDA are systematically larger than their TDLDA counterparis. The reverse
happens for the atoms, which is directly related to the different effect of SIC in
these systems as compared to the larger clusters. Although this is supported by
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other calculations (cf., e.g., Ref. 32), it is clear, however, that to treat the atom
in the jellium approximation constitutes a very drastic oversimplication. In fact,
the SJUBM is best suited for larger clusters, and in this sense the atomic results
presented here correspond to a rather extreme extrapolation which was carried out
since we are unaware of any experimental data and/or theoretical predictions for
these systems, except for the atomic species. Indeed, the available experimental data,
has been combined with extensive atomic calculations in Ref. 33 to determine lower
and upper bounds for the van der Waals coeflicients. The results are reproduced
in Table 7. These may be subject to revision (cf. e.g., Ref. 34), in the sense that
they are very sensitive to the input data which is not complete and unambiguously
established. Furthermore (as pointed out in Ref. 33), the authors of Ref. 33 believe
the true values for the Cs and Cg coeflicients to be closer to the lower bounds than
to the upper bounds, which is supported by our results.

All results tabulated were obtained making use of theories which do not incor-
porate the finite linewidth associated with both dipole and quadrupole collective
excitations. However, and to the extent that the intrinsic width of each peak is
small compared to the distance between consecutive peaks, one can still expect the
predictions of these theories to be reliable.

At the level of the dipole response, the finite linewidth of the different peaks in
the photoabsorption cross-section has been successfully interpreted in terms of two
processes®37: 1. Fluctuations of the cluster surface; 2. Collisions with the ionic
phonons.

Table 4. Values for the van der Waals coefficient Cg (in eV af) for the pair interaction between
potassium clusters with 1, 2, 8, and 20 constituent atoms (same conventions and notation as in

Table 1).

N 1 2 8 20

415(6)  1.10(7)  1.04(8) 4.55(8)
6.54(6)  1.43(7)  1.09(8) 4.52(8)
3.10(6)  8.01(6)  6.19(7) 2.59(8)

—

2.81(7)  2.44(8)  1.03(9)
2 2.98(7)  2.07(8)  8.25(8)
1.97(7)  1.38(8)  5.55(8)

1.45(9)  5.15(9)
8 1.13(9)  3.90(9)
7.93(8)  2.82(9)

1.62(10)
20 1.21(10)
9.13(9)
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Table 5. Values for the van der Waals coefficient Cs (in eV af) for the pair interaction between
sodium clusters (values for N along the column) and potassium clusters (values for N along the line)
with 1, 2, 8, and 20 constituent atoms (same conventions and notation as in Table 1). Note that
the classical approximation leads to the same value for the Cg coeflicient of the pair interactioins
[Nax,Ky] and [Nay, Kx]. The asymmetry of these pair interactions in the microscopic results

is due to QSE.

N 1 2 8 20
3.24(4)  7.03(4) 269(5) 6.32(5)
1 3.77(4)  6.51(4)  2.42(5)  5.66(5)
1.60(4)  3.20(4)  1.28(5)  3.20(5)
6.64(4)  1.44(5)  5.52(5)  1.29(8)
2 6.30(4)  1.09(5) 4.07(5)  9.50(5)
3.20(4)  6.40(4)  2.56(5)  6.40(5)
2.54(5)  5.52(5)  2.11(6)  4.96(6)
8 3.36(5)  5.87(5)  2.19(6) 5.12(6)
1.28(5)  2.56(5)  1.02(6)  2.56(6)
5.90(5)  1.28(6)  4.91(6)  1.15(7)
20  5.88(5)  1.02(6) 3.81(6)  8.88(6)
3.20(5)  6.40(5)  2.56(6)  6.40(6)

Table 6. Values for the van der Waals coefficient Cy (in eV ag) for the pair interaction between
sodium and potassium clusters with 1, 2, 8, and 20 constituent atoms (same conventions and

notation as in Table 5).

N 1 2 8 20
2.70(6)  7.24(6)  7.22(7)  3.18(8)
1 3.56(6)  8.14(6)  6.70(7)  2.87(8)
1.66(6)  4.49(6)  3.72(7)  1.60(8)
6.23(6)  1.64(7)  1.54(8)  6.66(8)
2 7.17(8)  1.57(7)  1.20(8)  5.01(8)
4.10(6)  1.05(7)  8.08(7)  3.35(8)
5.13(7)  1.22(8)  817(8)  3.09(9)
8 6.04(7)  1.23(8)  7.93(8)  3.05(9)
2.92(7)  6.78(7)  4.25(8)  1.60(9)
2.14()  4.90(8)  2.69(9)  9.02(9)
20  2.18(8)  4.10(8)  2.11(9)  6.98(9)
1.18(8)  2.59(8)  1.42(9)  4.89(9)

Both mechanisms depend on the vibrational temperature of the clusters, but
their dependence is different. Indeed, while the first process leads to a line width
increasing with the square root of the temperature,3:37:%® the second process is ex-
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Table 7. Lower and Upper bounds (taken from Ref. 33) for the van der Waals coefficients (g and
Cg corresponding to the interaction between pairs of sodium and potassium atoms. Units and
notation as in Tables 1-6.

Ce Cg

lower upper lower upper

Na—Na  4.00(4) 1.36(5) 2.86(6) 5.47(6)
Na- K 5.56(4)  9.99(4)  5.52(6)  8.08(6)
K-K 1.08(5)  1.10(5)  1.04(7)  1.09(7)

pected to exhibit a linear dependence.®®37 For the room-like temperatures achieved
in present day experiments, the first mechanism provides the dominant contribu-
tion. However, and as the van der Waals coefficients are concerned, these processes
provide an extra line width which can be simulated®® by folding the electronic re-
sponse with Gaussian functions with widths compatible with the magnitude of the
relaxation mechanisms involved. Similar outcome is expected for the quadrupole
response, even though the mechanisms may be different. On the other hand, and
for this temperature range, the QSE obtained at the level of linear response, corre-
sponding to the so-called Landan fragmentation, remain essentially unchanged, due
to the fact that the energy gap between filled and empty shells is nearly temperature
independent® and much larger than the vibrational temperature. We checked the
reliability of our predictions by recalculating the Cg coefficients, within TDLDA,
for all pairs of sodium clusters, for temperatures ranging from 100 to 500 K and
including the temperature-dependent broadening mechanisms mentioned above by
folding the electronic response with Gaussian functions with widths in accord with
the results of Ref. 37. In keeping with these results, we used the damping ra-
tio I'/fiw = 1.2,/T/C, appropriate for the surface fluctuation damping mechanism
referred before. For the restoring force coeflicient C' we used the general scaling
expression C' = KNep (cf. Ref. 37) with the constant K fixed by a best fit of this
expression with the restoring force coeflicients calculated for Nag (= 16 eV) and
Nago(~ 40 eV) making use of the Clemenger—Nilsson model (cf. Ref. 35 and ref-
erences therein). Furthermore, the width corresponding to the second mechanism
mentioned above was taken to be I' = 4T, with v = 2.3 The largest variation
found is always less than 0.1%, which provides additional confidence in the results
of Tables 1-6.

Finally, we would like to comment on the accuracy of our estimates. The com-
parison between the TDLDA results for the dipole polarizability and the exper-
imentally determined photoabsorption cross sections®! indicate that the TDLDA
results are &~ 7% blueshifted with respect to the experimental ones. The FULL-
SIC-TDLDA results for neutral sodium clusters with 8 and 20 atoms essentially
remove the remaining discrepancies. However, a jellium cluster is certainly a sim-
plification. Irrespective of the remarkable success of this model, it is clear that the
Jellium model is unable, by itself (and irrespective of the level of sophistication used
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in the calculation of the dynamic polarizabilities) to explain very fine details of
the photoresponse of clusters to light.2® While it seems fair to say that the jellinm
model “works surprisingly well” leading to cross sections which show, sometimes,
excellent agreement with the experimental findings, still “jellium” is not the last
word, but simply, and likely, an excellent starting point. Therefore, and taking into
account the excellent performance of the framework utilized in the present paper
in the description of the photoresponse of these microscopic aggregates, we expect
that modifications of the values obtained here for Cs and Cs will be small.

4. Conclusions and Future Prospects

In this paper, we carried out a state of the art calculation of the nonretarded van der
Whaals interaction coefficients between pairs of sodium and potassium microclusters.
Although lacking experimental data to test the reliability of our results, the success
of the model used in reproducing the experimental features of the photo-response of
these clusters indicates that our predictions are likely to provide very good estimates
for these quantities. From the comparison with the classical calculation, one can
conclude that QSE play a crucial role in the determination of these coefficients. A
comparison of the results of the two microscopic calculations shows that SIC lead
to sizeable changes in the van der Waals coeflicients, evidencing how pronounced
these effects may be in finite Fermi systems. Relaxation effects are expected to play
a minor role, in the sense that they seem unable to change the pattern of Landau
fragmentation arising from the microscopic calculation performed in this paper,
leading to a marked insensitivity of these coeflicients to the vibrational temperature
of the clusters.

In the present calculation, the lonic structure and the core electrons have been
neglected and replaced by a uniformly charged positive background. It is not clear,
at present, the quality of this approximation. Although seemingly very good when
applied to neutral sodium clusters,? there is indirect information coming from the
measurements of the photoresponse of cationic clusters, in which the STUBM and
FULL-SIC-TDLDA are unable to explain the experimental data.?® Furthermore, it
is well known that the core electrons cannot be simply disregarded in the treatment
of other metals, such as copper, silver, etc. The improvement upon the approxi-
mations used and the application of the present framework to characterize the van
der Waals interaction between small particles of other species remains a subject for
future work.
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