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Microscopic description of the plasmon resonance in small deformed metal clusters
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A full matrix random-phase-approximation calculation is performed to analyze surface plasmon
excitations in spheroidal alkali-metal clusters, described in the jellium model. The single-particle
levels are obtained in the local-density approximation to density-functional theory by solving the
Kohn-Sham equations for deformed systems, making use of a one-center expansion method for the

different potential terms.
clusters.

It is well established that quantum size effects play
a crucial role in the study of surface plasmon excita-
tions in jelliumlike spherical metal clusters. To reach
a satisfactory description of these excitations a quantum
mechanical calculation, based on the theory of linear re-
sponse or on the random-phase approximation (RPA) is
in order.'™® Indeed, these microscopic descriptions have
provided a simple understanding of many detailed fea-
tures of the optical response of small alkali clusters, in
particular, one of the main broadening mechanisms of the
surface plasmon due to its coupling to long-lived single-
particle excitations.!™®

In the case of nonspherical metal clusters one expects,
even at a classical level, an extra fragmentation of the
surface plasmon mode, due to oscillations along the dif-
ferent principal axis of the cluster. Attempts to describe
microscopically the dipole mode in jelliumlike, deformed
metal clusters were published in Refs. 7 and 8. The calcu-
lation performed in Ref. 7 is based on the self-consistent
spheroidal jellium model plus a time-dependent local-
density approximation linear-response formalism. This
model was applied to Na;o which has a spheroidal prolate
ground state and the results compare well with available
experimental data. In Ref. 8 a matrix-RPA calculation
was performed to compute the surface plasmon excita-
tion in the spheroidal clusters Nag and Na;o and the el-
lipsoidal Naj,. It was based on single-particle states of
a triaxially deformed harmonic oscillator potential plus
an [? term.? The results reproduce reasonably well the
measured deformation splitting,'® although they fail to
explain the absolute value of the cross sections. This is
partly due to the simplified single-particle levels used in
the calculation and also to the lack of self-consistency
between the ground state (GS) calculation and the RPA
residual interaction, which was taken to be of a separable
form.

In the present paper we perform a full matrix-RPA
calculation in order to describe collective excitations in
deformed alkali-metal clusters. We consider the sodium
clusters Nag and Na;g, which have been calculated to
display an oblate and prolate spheroidal deformation in
their GS (Ref. 11), respectively. The present formula-
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Numerical results are shown for the prolate Najo and the oblate Nas

tion has the same matrix form used in Refs. 3 and 8
but is now carried out fully self-consistently. Namely,
both the (deformed) GS potential and the RPA residual
interaction are computed self-consistently. This brings
it to the standards of Ref. 7, with which our results for
Naj¢ can be compared directly. However, and in contrast
with Ref. 7, our formulation is more general and not re-
stricted to spheroidal deformations. This, together with
a smoother growth in computer demand as a function of
cluster size, makes this method feasible to be applied to
more complex finite systems such as the fullerene family.

The single-particle spectrum necessary to construct the
RPA matrix is obtained by means of a self-consistent cal-
culation for the deformed cluster. This is carried out
in the local-density approximation (LDA) to density-
functional theory, via the solution of the (deformed)
Kohn-Sham equations.® For the exchange-correlation po-
tential Vxc we use the parametrization of Gunnarsson
and Lundqvist.!? To construct the eigenfunctions corre-
sponding to occupied and to unoccupied single-particle
orbitals we use the following strategy. At each iteration
of the self-consistent cycle, we perform a one-center mul-
tipole expansion of the density of valence electrons p and
of the mean field potential Viyr, that is, we write p(7) =
>r Pr(r)YL,0(8) and Vmr(7) = 3°p Vmr,L(r)YL,0(0).

Since we limit ourselves to external potentials which
display axial symmetry, both parity and the azimuthal
quantum number m are conserved. Making explicit use
of these conserved quantum numbers, we write the so-
lutions of the Kohn-Sham equations as ¥; ,, »(7), where
7 = (—)! is the parity of the state and i labels the solu-
tions. We then expand these wave functions in a com-
plete basis set, W, .(7) = >, cZ;ﬁL’wQZ;’(F). For
basis functions we selected the complete set formed by
the eigenfunctions of the spherically symmetric three-
dimensional harmonic oscillator in spherical coordinates,
with wg as its fundamental frequency. These are com-
pletely specified by the quantum numbers n,l, m and can
be written as ‘I’ZZ,I(F) = R™(r)Y;m(0, ), being eigen-
states of the harmonic oscillator potential with energies
Awo(Nsh + 3/2) with Ny, = 2n + 1.

The choice of the basis set is not arbitrary. In fact, har-
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monic oscillator potentials are able to account for some
qualitative features of alkali-metal microclusters.®?
They also present the advantage that all angular inte-
grations can be performed analytically. Furthermore, for
axially symmetric systems, the Hamiltonian matrix is a
real symmetric matrix, block diagonal in the quantum
number m and states with different parity do not mix,
which greatly speeds up the diagonalization process.

The harmonic oscillator wave functions depend para-
metrically on the choice of the fundamental frequency wo.
We used fuwg = 0.1 Ry and eigenfunctions up to the en-
ergy 21.5hwy, i.e., Nsp = 20 major oscillator shells, were
considered in the diagonalization.

A further truncation is necessary in the one-center mul-
tipole expansions. For symmetry reasons only even L
components are present in the different multipole ex-
pansions and we checked that convergence was already
achieved for L = 8, even though we kept the expansion
up to L = 10.

For the external potential of the ions we make use of
the jellium model approximation and, following Ref. 11
we keep the jellium density constant as a function of de-
formation, and equal to the bulk value for sodium, as-
sociated with r, = 4ao. We enclose the jellium charge
density in a volume limited by a surface which, in spher-
ical polar coordinates we define as R(6) = o 1Ro{1 +

Coul _
Aph,p’h' = Z
A nplpnndnnp oyl

with

RN = [Rorte () Bt ()

The exchange-correlation contribution is

XC _
AXS =Y

A np,lp,np,,lh,‘npl ,Ipl Yy pt ,lhl

§ : nplp nhsln Pptlpt npely
cpp Pch cp' Chr 2A+ 1 Coul
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% a.P,[cos(d)]}. For the clusters we consider in the
present paper, the a; parameter plays no role, and there-
fore we searched for the optimum shape of the clusters in
the two parameter space defined by a; and as. We de-
fined a grid in the a,,a4 “plane,” and computed the to-
tal energy (LDA) associated with each shape, looking for
the GS shape of the cluster which we define as the one to
which corresponds the minimum energy. Once the GS is
found, we compute the set of single-particle Kohn-Sham
orbitals in an extended basis including eigenfunctions up
to Ng, = 20. This defines the model space to be used in
the construction of the RPA matrix.

The residual interaction entering the RPA matrix (for
a detailed description of the RPA formalism see, for in-
stance, Refs. 3, 4, and 6) is a double variational derivative
of the energy density functional

e2

Vres(fi,r_é) = m

+ i%é(rz -®B).

The main task is the evaluation of the matrix elements
of the residual interaction. According to Eq. (1) we have
to evaluate two contributions, one due to the direct part
of the Coulomb potential and the other to the exchange-
correlation term. The Coulomb contribution to the A
matrix can be written

4T R
pmph (lpvmplyz\*,ullh»mh)(lh’amh’IYz\,ullp”mp')a

(2)

A

r

< n e, Mgt lpt 2,2

A+1R P8 (P ) R™H ' (1) 71 radridrs.
>

l ﬂhlhn'1l’nhl1l
E cprrrept e, T et

AL .
xS RECY T(/\OLOUO)(/\;;LOU;L)(ZP, mp| Y3 ks ma) (I monr Yo ullpr s M), (3)
T 7 JVA4r

where § = 20+1, (lymylagmg|LM) are the usual
Clebsch-Gordan coefficients, and

Ri{C — /Rn,,,lp (T)Rm"l" (,,,)Rnpf At (,’_)
x Rt (1) VEC (r)r2dr.

VXC is the L component of the multipole expansion of
the dVxc/dp. We have to include a full summation over
the quantum number A = 1,3,5, ... although for the de-
formations considered here it is enough to sum up to A
equal to 5 or 7. The exchange contribution has an addi-
tional difficulty due to the coupling of A with L, which
runs up to L = 10. We have checked that VZC(r) is a
slowly decreasing function of L and that even for large L
values VXC(r) goes to infinity in the limit of large 7.

[

We now present results for the prolate Na;o and the
oblate Nag clusters. First, we carry out the energy min-
imization in the as,a4 plane. We also map our defor-
mation to the § deformation used in Ref. 11, and we
obtain as a result that our GS shapes for both Nag and
Najg are in excellent agreement with the shapes listed in
Ref. 11. In particular, we find Nag to be oblate, with
deformation parameter § = —0.5, that is, a; = —0.34
and ay = 0.09, whereas Na;o is prolate, with § = 0.5,
that is, az = 0.33 and a4 = 0.08. Once the GS has been
obtained we compute the RPA response. In Fig. 1 we dis-
play the photoabsorption cross section obtained for Na;q
together with the experimental data of Ref. 10. We simu-
late the coupling of the dipole oscillations to the thermal
vibrations of the surface!® and to the ionic vibrations®
by folding the RPA lines with Lorentzian functions. The
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FIG. 1. Photoabsorption cross section for the Na;o cluster
as a function of the wavelength of the incident photons. The
experimental data were taken from Ref. 10.

damping factor v = Eo/T', Eqg being the centroid of the
resonance and I" the width, is fixed at v = 0.09. This is
the only parameter in Fig. 1 and in that sense we remark
on the good agreement obtained for the distance between
the peaks, directly dependent on the deformation, and for
their relative magnitude. An excellent agreement is also
found between our results and those of Ref. 7. Apart from
the deformation splitting which we just mentioned, the
RPA cross section shows some structure at high excita-
tion energies (in the ultraviolet region) which may even-
tually be enhanced in a more refined treatment which
would remove the self-interaction errors inherent in the
LDA, including naturally the Rydberg states which are
missing at the level of the LDA.5 The photoabsorption
cross section for the oblate sodium cluster Nag is shown
in Fig. 2. Both the splitting and the relative strength of
the peaks are well reproduced by our calculation, which
includes a damping factor v = 0.07. For this cluster the
third small peak present in the experimental optical re-
sponse (at wavelength ~500 nm) is also predicted by our
theoretical calculation as a yield of the Am = 1 contribu-
tion. From this comparison one can conclude that apart
from the systematic blueshift of the LDA response,'* the
theoretical cross sections are in good agreement with the
experimental ones. In particular, their absolute value
fits well the experimental data. This is an important im-
provement with respect to Ref. 8, and stresses the impor-
tance of self-consistency in the treatment of the optical
response.

It is well known that the exchange-correlation poten-
tial plays an important role in metal clusters. For the
deformed systems considered here we analyzed the im-
portance of the different terms of the multipole expan-
sion of the XC term to decide where to truncate the sum-
mation. To this end we evaluated some relevant radial
integrands R¥C corresponding to the harmonic oscillator
wave functions which are the main component of particle-
hole states with high transition probability. We observed
that the integrands vanish out of the cluster region as
expected and that it is sufficient to perform the summa-
tion up to L = 8. This was also concluded by following
the evolution of the peaks of the oscillator strength with
the inclusion of the successive L terms (see Fig. 3). The

FIG. 2. Same as Fig. 1 but for the oblate Nag cluster.

final result is practically reached at L = 6. We observed
that all the terms are necessary not only to reproduce
the correct position of the peaks but also to adjust their
magnitude. The effect of including high multipolarity
contributions is to favor a concentration of strength in
the main plasmon (the one of lowest energy).

Also arising from the deformed shape of the cluster is
the sum over A that has to be performed in Egs. (2) and
(3). By observing the convergence of the RPA results we
have checked that truncation in A = 7 is a very good ap-
proximation for the systems under study. Comparing the
results for Najo arising from the full calculation with a
calculation performed considering only A = 1, we noted
that the inclusion of high multipolarity terms is essen-
tial to get the correct fragmentation (thus the absolute
magnitude) although it is not very important in the de-
termination of the position of the peak. The effect of
including the multipolarities up to A = 7 is a slight shift
of the peaks to higher energies and a redistribution of
the strength, displaying a more pronounced fragmenta-
tion. This can be explained as follows. As a consequence
of the inclusion of A > 1 terms in Egs. (2) and (3), matrix
elements A, ,'ps that were negligible will take apprecia-
ble values. This leads to an extension of the effective
particle-hole basis and thus a stronger coupling of the
collective state with other particle holes that lie close in
energy.
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FIG. 3. Evolution of the oscillator strength for the z com-
ponent of the dipole operator for the case of Naio when dif-
ferent terms in the Legendre expansion of the XC part of the
residual potential are included. lmax indicates the maximum
L taken into account in the calculation.
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We then conclude than the matrix-RPA formalism pro-
vides a satisfactory description of dipole plasmon reso-
nances in deformed metal clusters. The one-center mul-
tipole expansion of the different potential terms and den-
sities condense the solution into a repeated evaluation of
radial integrals while angular terms are worked out in
an analytical way. Besides the computational simplicity
of the present method, another advantage of this kind
of calculation is that further modifications in the single-
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particle spectrum (e.g., by inclusion of structural ionic
effects via pseudopotentials) only involves a change in
the coefficients of the expansion.

M.B. and M.E.S. gratefully acknowledge support from
Fundacién Antorchas in Argentina (Project No. A-
12830/1-000014). M.B. also acknowledges support from

the Consejo Nacional de Investigaciones Cientificas y
Técnicas.

! W. Ekardt, Phys. Rev. Lett. 52, 1925 (1984); Phys. Rev.
B 31, 6360 (1985); 32, 1961 (1985).

2 D.E. Beck, Phys. Rev. B 30, 6935 (1984); 85, 7325 (1987);
43, 7301 (1991).

3 C. Yannouleas, M. Brack, R.A. Broglia and P.F. Bortignon,
Phys. Rev. Lett. 83, 255 (1989); C. Yannouleas, E. Vigezzi,
and R.A. Broglia, Phys. Rev. B 47, 9849 (1993).

4 C. Yannouleas, J.M. Pacheco, and R.A. Broglia, Phys. Rev.
B 41, 6088 (1990); C. Yannouleas and R.A. Broglia, Phys.
Rev. A 44, 5703 (1991); Ann. Phys. 217, 105 (1992).

5 J.M. Pacheco and W. Ekardt, Z. Phys. D 24, 65 (1992);
Ann. Phys. 1, 254 (1992); Phys. Rev. B 47, 6667 (1993).
6 See e.g., M. Brack, Rev. Mod. Phys. 85, 677 (1993), and

references therein.

" W. Ekardt and Z. Penzar, Phys. Rev. B 43, 1322 (1991).

8 M. Bernath, C. Yannouleas, and R.A. Broglia, Phys. Lett.
A 156, 307 (1991).

? K. Clemenger, Phys. Rev. B 32, 1359 (1985).

10 K. Selby et al., Phys. Rev. B 43, 4565 (1991).

11 W. Ekardt and Z. Penzar, Phys. Rev. B 38, 4273 (1988).

12 0. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274
(19786).

13 J. M. Pacheco and R.A. Broglia, Phys. Rev. Lett. 62, 1400
(1989).

14 The discrepancy between theory and experiment can be
attributed to the noncancellation of self-interactions in the
LDA and to the neglect of ionic structure effects.



