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LETTER TO THE EDITOR 
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Abstract. The electromagnetic response of the fullerene in the energy m g e  0 < E < 35 eV, 
exhausting 84% of the Thamas-Reiche-Kuhn sum rule. has been worked out using the local 
density and random phase approximations. A detailed correspondence between the calculated x-  
plasmons and the peaks determined in opticalluv sNdies is found. The damping width (s 12 eV) 
of the Mie resonance observed at - 20 eV is well reproduced. and is due to Landau damping. 
This resonance is found to be determined by U -+ U and, to a large extent, also by U + n. 6 
pattidehole msitions. 

The basic elements needed for an accurate description of the response function of a many- 
particle system are: a proper treatment of ground state correlations, the fulfilment of energy 
weighted sum rules (EWSR), and the respect of the symmetries of the system. This has been 
the main scope of the work reported in the present paper. aimed at providing a quantitative 
microscopic understanding of the electromagnetic response of CSO [l-31. 

Having to do with a system of delocalized electrons, we shall determine the mean field 
where the 240 valence electrons of Ca move, in the local density approximation (LDA, 
cf e.g. [4]). Because collective enhancements as well as screening effects are expected to 
be very important for the dipole response of this system, we shall calculate them making 
use of linear response theory within the random-phase approximation (RPA, cf. e.g. [5]) ,  
respecting both the icosahedral symmetry of the C ~ O  molecule as well as the Thomas- 
Reiche-Kuhn (TRK) sum rule. In other words, no approximation has been introduced in 
solving the LDA plus RPA equations describing GO. It will be concluded that a different 
quantitative picture concerning the distribution of dipole strength emerges from the present 
calculations as compared to previous calculations, in particular those based on the tight- 
binding approximation. 

The Kohn-Sham equation for the valence electrons of Ca is 

(T + U 9 r ,  [ P I ) )  w-) + UNLl!b.(r)I =&@A-) (1) 

sum of the kinetic energy T ,  of a local potential displaying a functional dependence with 
the total density p of the electrons. Uhc(r, [p ] ) ,  and a non-local potential, UNL[$(r) ] ,  
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characterized by a functional dependence with the wavefunction $J describing the single- 
particle motion of the electrons. The local term can be written as 

uLOC(r, [PI) = v&-, [ P I )  + Vx&, [ P I )  + Vext@) (2) 

where V, is the Coulomb potential acting among the electrons. For the exchange-correlation 
potential VXc(r,  [ p ] )  we use the parametrization of [6]. In equation (2), the quantity 
Vmt(r) = E,"=., Ri I), represents the 'external' potential felt by the electrons due 
to the N. = 60 positive carbon ions disposed on the truncated icosahedron. Here, the R, 
are the equilibrium positions of the carbon nuclei, referred to the centre of the molecule. 
The nearest neighbour distances between carbon ions used were 1.453 A on pentagons and 
1.369 A between pentagons. Then, the radius of Ca. R = IRI results 3.5256 A. The 
function ugndo(r) = uW&) + is the local part of the pseudo-potential caused by 
the two tightly bound Is core eleclmns on the four 2, 2p valence electrons of each carbon 
atom. The expressions used are those of [7] and the term ~2 is connected with the non- 
local part of the pseudo-potential (see below). The contribution of the non-local part of the 
pseudo-potential, UNL(r) = E:, u ~ o d o ( l ~  - R, I), was calculatedt from the expression 
uEudo(r) = (u~(r)-u~(r))jO)(O~+(u1(r)-uz(r))II)(1I. where le)(!\ is a projection operator 
OD single-particle eigenstates of angular momentum E ,  and ut(r) are parametrized functions 
[7]. Note that the pseudo-potentials are referred to the centre of mass of each of the ions. 

We next expand the external potential V e x e ( ~ )  in spterical harmonics obtaining VeXt(v) = 
Y:,, ,(Ri).  The radial functions are given by 

VL(r)  = 2n J!] d ~ u $ ~ ~ , ( y ) P ~ ( x ) ,  where y2 = r2 + R2 - 2rRx and PL(x) is a Legendre 
polynomial. Due to the icosahedral symmetry of c60, the coefficients SL,M = ( - ) M S ~ . - ~  
are different from zero for selected values of the angular momentum L = 0,6, IO, 12, 16, 18, 
20, U, etc. For instance, S0.o = 16.9257, s6.0 = 1.4123 and S6.*5 = ~1.1267.  Particularly 
large are S,0,*5 = ~11.3725, S1s.0 = 20.2541, S18,*:15 = ~18.0509 and S I S . ~ ~  = 711.4227 
(cf also [S, 91). 

Because of the nearly spherical symmetry of Cm, it is convenient to use the spherical 
harmonics expansion $J,(r) = xBh Citn&h(r), where 4"tn(~) = Rnt(r)Yt+(f i ) .  The 
radial functions R,&) of the basis wavefunctions $nCm(r) are solutions of equation (1) 
taking into account only the spherical (L = M = 0) component of ULOc and disregarding 
UNL.  

For the solution of the full Kohn-Sham equation (I), one needs to calculate matrix 
elements of the pseudo-potential u F k u d o ( ~ ' )  in the spherical basis &,,,(T). These matrix 
elements are simple (one-dimensional) integrals, with exception made for the fact that the 
wavefunctions +"tm(r) are referred to the centre of mass of the fullerene, while the pseudo- 
potential is referred to the cenue of each ion. This is testified by the relation T' = T - Ri. 
where r' is the vector position measured from the ion, while R: is the position of the 
ith carbon ion. There is a simple solution to this technical problem which amounts to 
transforming &tm(r) to the reference frame of each of the ions, an operation which leads 
to &tm(7) = En, D&&) Cc izyl(r', R i ) Y t ~ ( f i ' ) .  This relation expresses the fact that 
in the transformation process one has both to rotate the reference frame of the molecule to 
make its z-axis coincide with the R, vector (D-function), as well as to shift the origin of the 
molecule to coincide with that of each of the ions, a translation which leads to the 'effective' 
radial wavefunction (see e.g. [IO]) k:y'(r', Ri) = 2n J!, dXR,t(r)oc, , , l (x')ot , , l~, l (x) .  

f Note that a term proportional to t~ was added and subvacred with projection on t = 0 and t = 1 states. In this 
way, a completeness summation could be carried out leading to the v2 term in the expression of ugu,,. 

SL,MVL(r)YL,M(i), where SL,M = 

~~ 
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Here, r = (r‘ + R: + 2r’Rx)1/Z, x‘ = (Ri + r‘x)/r and @e,,,(@) = exp(-im4)Yem(@, 4). 
The matrix elements of the pseudo-potential are then proportional to integrals of the type 
JFdr‘r‘i(r‘, R~)u~~ud, , ( r ‘ )~(r‘ ,  Ri). 

The diagonalization of the Hamiltonian (1) in the spherical basis discussed above, 
is performed, for each iteration, by including moments of V,, up to L = 20 and all 
the spherical wavefunctions with eigenenergies up to 40 eV. This means that spherical 
wavefunctions having angular momenta in the range 0 < e < 20 and number of nodes 
n = 0, 1, 2 , .  . ., 15. denoted as U ,  IT, 6, ... orbitals, were considered. The energy gap 
between the highest-occupied and the lowest-unoccupied molecular orbital states (HOMO- 
LUMO gap) is predicted to have a value of 1.91 eV as compared to the value of 1.8610.1 eV 
measured experimentally Ill]. These states have n = 1 character (= 70%) and have no 
components with n = 0. Consequently, one can identify these states with z electrons 
whose orbitals are mainly conceneated perpendicularly to the surface of the hollow sphere. 
Important contributions to this gap arise from the very large SIO.M (M = 0.15, &IO) term 
in Vu,. This is due to the fact that the angular momentum of the levels defining the gap is 
mainly e = 5. The band width is predicted to be E 21 eV. This number is controlled, to a 
large extent, by the non-local p a t  of the pseudopotential, as well as by the large S I ~ , M  term 
of the local pat. This is because the highest bound state with n = 0 character (m orbital) 
arises predominantly from e = 9 states. 

Making use of the single-particle basis discussed above, the dipole response of C a  
has been worked out in the random phase approximation (RPA). The basic quantity to be 
calculated is the free density4ensity correlation function (cf e.g. ch 6 of [4] and ch 4 of 
PI 
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Expanding 6n and V in spherical harmonics, the relation (4) transforms into a set of coupled 
linear equations in r-space. In the case of a dipole field, 

We have found that the main contribution arises from the term with L’ = 1 and M’ = 0. 
Once the induced density is obtained, the dynamic polarizability can be calculated through 
the relation a ( w )  = j”omdrrZ6nlo(r)D(r) and the associated strength function is given by 
the relation S(o) = -(l/i-c)Ima(w). The dipole response function is then obtained as 
d(o)  = oS(o). The unperturbed strength function, Sco)(w), is obtained by replacing in 
the expression of a(@), 6n by Sn(O). For the static polarizability of the system we obtain 
(~(0) = 88.6 A3. There are at present no direct measurements of (~(0) for a single molecule. 
However, we can compare our result with estimates from the solid phase (fullerites). Using 
the Clausius-Mossotti relation between the dielechic constant of the solid and (~(0) estimates 
of the polarizability range from 78 to 92 A’ (cf e.g. [121). 

The results for both the unperturbed particlehole and RPA strength functions S(w) 
of C a  are displayed in figure 1 in the range 0 < w < 35 eV, in comparison with the 
experimental findings [I, 21. Within this range of energy, the theoretical strength functions 
S(O) and S exhaust 95% and 84% of the TRK sum rule, respectively. Although the RPA results 
show strong mixing of individual particlehole excitations, it is still possible to identify the 
different peaks below ~6 eV with r-r transitions, while for increasing energies transitions 
connecting cr orbitals with K and 6 orbitals dominate the response. To be noted is that the 
tail of S(o) (U > 30 eV) is not very accurate. This is due to the energy cutoff at 40 eV 
used for the particlehole basis states. 

As seen from figure 1, theory provides an overall account of the experimental findings. 
In particular of the width of the Mie resonance. Consequently, singlaparticle decay (Landau 
damping) can be viewed as the main relaxation mechanism of this collective mode. A clear 
test of this result is provided by including in the calculation only the particlehole excitations 
which contribute more than 0.1% to the EWSR. As compared with the calculation in the full 
basis, there is a shift of the peak of the We resonance of about 4-5 eV, and a reduction 
by a factor -3 in the damping width (i.e., from 12 eV to 4.5 eV, see figure I@)). This is 
a consequence of the fact that at the lowest energy of the shifted centroid, the density of 
unperturbed paxticle-hole excitations is 50 eV-I while around 20 eV is 200 eV-’ (cf inset 
figure I@)). A further check of the Landau damping mechanism is provided by taking into 
account in the solution of equation (8) the coupling of the Mie resonance not only to the 
monopole component of the external field (as shown in figure l(b)) but also to the higher 
multipolaritites (L‘ = 5, 7, M’ = 0, f 5 ;  L‘ = 9, M‘ = 0, f5; L‘ = 1 I ,  M‘ = 0, rt5, f IO. 
etc). The results essentially coincide with those displayed in figure l(b). This is gratifying, 
also in view of the fact that the effect of the coupling between the Mie resonance and the 
thermal fluctuations of the cluster surface, which have been found to be very important in 
explaining the spreading width of the plasmon in alkali clusters (cf e.g. [13]) leads, in the 
present case, to negligible contributions to the damping width 114, 151. 

The experimental data at low excitation energy corresponds to the opticaVUv absorption 
spectra of Cw in hexane solution, at mom temperature [I]. Nine transitions below 6.4 eV 
have been observed displaying the following energies (oscillator swength): 3.04 eV (0.005), 
3.30 eV (-), 3.78 eV (0.37), 4.06 and 4.35 eV (0.10), 4.84 eV (2.27), 5.46 eV (0.22). 5.88 
eV (3.09) and 6.36 eV (-). Theory predicts 3.4 eV (0.048). 3.91 eV (0.59), 4.38 eV (0.041), 
5.05 eV (OSO), 5.30 eV (0.14). 5.42 eV (0.21), 5.70 eV (0.084), 5.92 eV (0.95) and 6.35 eV 
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Figurr 1. Dipole strength function of the Cw molecule. (a )  The free response S")(o). Making 
u e  of this result, the density of states has been calculated and is displayed in the inset. Also 
shown is the unpemrbed strength function averaged with Lorentzian functions having widths 
r = 0.060 (full curve). (b) The W A  response (full curve), S ( d ,  is displayed and compared with 
experimental data 121 (circles). The RPA results have been averaged with Lorentzian functions 
having widths r = 0.06w. The broken curve represents the WA mu11 obtained by keeping only 
those pardele-hole bansitions which conhibute more than 0.1% to the EWSR In the inset details 
are given of the o p t i d u v  response of the system (cons1 = 2m/fr2e2) in comparison with the 
experimental findings [I]  (broken curve). 
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(0.48). There is an overall correspondence between the calculations and the experimental 
findings . However, theory leads to too strong a screening. In fact, while the observed 
summed oscillator strength below 6.4 eV amounts to 6.07, the RPA prediction is 3.1. To 
be noted is that the value associated with the unperturbed response function in the same 
energy interval is 33.4. 

During recent years a number of calculations concerning the collective properties of Cm 
have been reported in the literature [3, 9, 16-19], The assumption of spherical symmetry 
made in a number of papers has important consequences for the whole response function, 
but in particular for the width of the Mie resonance which in this approximation becomes 
very narrow (cf [3, 18, 191) and much smaller than the experimental value [2]. 

The calculations based on the tight-binding approximation and linear response [3, 171 
lead also to a Mie resonance which is still noticeably narrower than the one displayed in 
figure 1. Furthermore, while the present calculation predicts this mode to carry an oscillator 
strength of ~ ~ 1 6 0 ,  the results reported in 131 display half this value. This difference implies 
a factor of 2 in the associated photoabsortion cross section, a prediction that can be tested 
experimentally. Moreover, in the calculations of [3, 171 most of the oscillator strength lies 
above 40 eV, while we find, within the range W O  eV about 90% of the oscillator strength. 
This prediction has important consequences, in particular for the photoionization process, 
and can be again tested experimentally. 

Concerning the low-lying states, there is an overall agreement between the present 
results and those of 131. As already mentioned above, the lowest observed state [ l ]  has 
an energy of 3.04 eV and oscillator strength f = 0.005. These results are very accurately 
reproduced by Bertsch et a! [3]. Our results are more in line with those of [I@, which 
predict the lowest optical transition at m3.4 eV with an oscillator strength of 0.08. On the 
other hand, the integrated oscillator strength below 6.4 eV which can be read from figure 
2(b) of [3] is %1.8 compared to the experimental value of 6.07 and our value of 3.1. 

In conclusion, we have found that the opticaUuv part of the dipole response of c6, is 
dominated by particle-hole transitions among IT orbitals, while the Mie resonance observed 
at % 20 eV arises not only from u-u transitions but also, and to a large extent, from 
particle-hole excitations connecting U with IT and 6 orbitals, as well as final states with a 
higher number of nodes. The inclusion of these transitions is essential to fulfil the energy 
weighted sum rule. The width of the Mie resonance is due to the decay of the plasmon into 
single-particle configurations. To obtain a quantitative account of the experimental findings 
the icosahedral symmetry of the mean field has to be respected to a high degree of accuracy. 

We have benefitted from many discussions with G Benedek, G F Bertsch, P Milani, G Onida 
and K Yabana. HER gratefully acknowledges financial suppofi from the Alexander von 
Humboldt Stiftung (Feodor Lynen program). LIS gratefully acknowledges financial support 
from the Commission of the European Communities (Community training project 920027). 
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