Size-Dependent Plasmons in Metal Clusters

The present theory of size-dependent collective excitation in metal clusters is briefly de-
veloped and compared with recent experimental data. Open problems are clearly discussed
both on the theoretical side and on the experimental side.
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1. INTRODUCTION

The optical properties of small metal particles can be derived from
the knowledge of the dipolar dynamical polarizability o). Once
a(w) 1s known, the photoabsorption cross section 6(w) is given by

Gl = 47:%Ima(a)). (1

Here Im means the imaginary part of o. Equation (1) can be
derived in astraightforward manner using first-order time-depen-
dent perturbation theory with respect to the external radiation
‘field.1:? A derivation of Eq. (1) within macroscopic electrodynam-
ics can be found in the monograph by Bohren and Huffman.3 Al-
though theoretically it is easier to understand the properties of free
clusters, to be experimentally investigated in a molecular beam,
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traditionally (for intensity reasons) clusters have been investigated
either deposited on a surface or embedded in a so-called matrix
(typically one of the rare gases, Xe, Ar, etc.). In this latter case, and
within the framework of macroscopic electrodynamics,* o) is
given as follows (a spherical shape of the cluster is assumed with
radius R):

Em & 28,

a(w) = R’ (2)

Here the various dielectric constants used (g, for the metal particle
and g4 for the dielectric host) are (by definition) the size-indepen-
dent macroscopic dielectric constants. The only size effect in this
formula 1s the trivial volume term. That this formula is wrong can
be immediately inferred from the experimental data shown in Fig.
1, and taken from Ref. 5. According to Eq. (2), the response func-
tion blows up at the zeros of the denominator,

En = — g, (3)

This equation is the analog for interfaces to the defining equation
for surface plasmons of free plasmons of free metal particles.©

Inspection of Fig. 1 shows clearly that macroscopic electrody-
namics cannot be applied to small metal particles, because there is
astrong size dependence of both the peak position and the width of
the interface plasmon, whose origin is still the subject of contro-
versy 1n the existing literature. Whereas some authors assign these
features to genuine cluster properties,”-® Bo Persson has shown?
that at least the plasmon width can be quantitatively understood by
invoking the coupling of the metal plasmon to particle-hole pairs,
where the “particle” state is a chemisorbed state at the interface be-
tween the metal cluster and the dielectric host. The situation is
much simpler (on the theoretical side) for free clusters, for which
Eq. (2) applies for g; = 1.

The modern microscopic theory for the optical absorption of
free clusters started in 1984 with Ref. 10, and the experimental
work on free clusters started two years later with the pioneering
work of W. de Heer on free Nasg.!!
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FIGURE 1 Experimental data (absorption for Ag, clusters embedded in solid Ar (from Ref.
5). The huge hump is understood as an interface plasmon, introduced by the Ag clusters.
Neither bulk silver nor solid Ar have any structure in this spectral region; hence it is a size
effect. Whereas large clusters show a broad peak, the smallest (upper part of this graph)
show an effect which was not fully understood at that time. Nowadays it is considered just
one example of fragmentation (discussed in the main text). The interpretation of these data
is still controversial (see main text).
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2. THEORY

Because clusters constitute a bridge between atoms and solids, one
can start in the calculation of the optical properties either from the
atomic side or from the solid state point of view. Historically, the
latter approach was first; later quantum chemists calculated optical
spectra of micro-clusters, but all these methods are far too compli-
cated to study larger aggregates or the transition to the bulk. Fur-
thermore, there seems to be a problem. Whereas the experimental
spectra (Fig. 1) show clearly the overwhelming importance of
plasmons, there is no paper about the quantum-chemical methods
showing how collective effects could be identified within this
frame.

The solid state point of view for looking at the optical properties
of metal clusters starts, consequently, with a cluster model, which
has been extremely successful for the study of collective excita-
tions in solids,!2 namely the jellium model,!® which predicts not
only the magic numbers of metal clusters, but also the surface plas-
mon as the dominating feature in the optical spectra. Having a clus-
ter model for the calculation of the electronic structure, we need in
addition a method of calculation of the optical excitations. Because
this is intrinsically a very intricate many-body problem, which be-
longs to the domain of dielectric screening (from the macroscopic
point of view), a method which stresses this point should be ideal to
study the general dielectric response of metal clusters. When one
of us (W.E.) started his activity in this field, a seminal work was
published by Zangwill and Soven,! which was tailor-made for the
study in question, namely the time-dependent local density
approximation (TDLDA) applied to closed shell atomic systems
(the rare gases). This theory can be applied to systems of any size
and is based on density functional theory. Though it lacks a firm
theoretical justification (there is no theorem like the Hohenberg—
Kohn theorem for the ground state! which sanctions the use of a
time-dependent density functional), it has been shown repeatedly
that it “works.” 16 Furthermore, there is a perturbational consider-
ation by Gross and Kohn!7 which shows to which extent the
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TDLDA can be justified (for acritical discussion of this “method,”
see also the book by Mahan and Subbaswamy?).

We continue with a brief presentation of the basic formalism of
the TDLDA as applied to metal clusters, where we always focus on
the physics behind the formalism presented. If we neglect foramo-
ment the electron—electron interaction and if the cluster is placed in
an external electromagnetic field, an induced charge density is set
up in the following way:

Q,‘nd(r»w) = Jdr1X0(rar1;w)Vex(r1»w) . 4)

V,, is the external potential. Here Yo is by assumption the indepen-
dent-particle electronic susceptibility

%(rl)w}‘(rl)wj(r)w}‘(r)
ho — (g, — &) + 10

gorriw) = > (i = f) (5)
iy

and the positive infinitesimal  guarantees the causality of the re-
sponse (that is, the response is retarded). The interpretation of this
formula is evident.

The external perturbation creates particle-hole pairs with
energies € — € and wave-functions Y jlpf; unfortunately this is not
the complete story, simply because once the induced charge densi-
ty is established, the electrons (and holes) feel an additional in-
duced field, which consists of an induced Coulomb part

0ind(T1 @)
Vid oL, 0) = dr—————7% (6)
d.C J 'l —ryl

and an induced exchange-correlation part:

oV,
Vind (D 0) = [ agc] Qind - (7
Cp
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Whereas there is absolutely no doubt about the Coulomb part of the
induced potential, the same is unfortunately not true for the ex-
change-correlation part. The special form, Eq. (7), was introduced
by Zangwill and Soven intuitively, by assuming that the same func-
tional as in the ground state can be used in the presence of a time-
dependentinduced charge density; and because §p;,4 is assumed to
be small, a Taylor expansion around the density in the ground state
0o leads immediately to Eq. (7). Because of this induced field, the
induced charge density is no longer determined by Eq. (4), but
instead by the following equation:

Qimd(F @) = fdrlXo(rarllw)Vgﬁ(Fi,w), (8)

with the total effective potential given by Ver = Vox + Vindc +
Vind xc. Hence, the TDLDA is conceptually a self-consistent field
theory, as is the random phase approximation (RPA) or the random
phase approximation with exchange (RPAE): Indeed, the TDLDA
is the density functional theory (DFT)-based analog to the RPAE,
The underlying basic assumption is that all many-body effects can
be stored in an effective field to which the clectrons respond as in-
dependent particles.

Clearly, there are some important intrinsic deficiencies in the
formalism developed so far. First of all, the TDLDA suffers from
self-interaction effects, in very much the same way as the local
density approximation (LDA) for the ground state. These effects
can be removed, as has been shown by two of us.1819 A already
mentioned, all many-body effects (plasmons, giant resonances,
resonant photoemission, etc.) are stored in Ve, whereas %, as an
independent-particle response function, does nol contain any
many-body effects. But, of course, we can define alternatively a re-
sponse function with respect to the external field which contains all
these many-body effects:

and(r’w) = jdr1X(r,r1;W)Vex(rl,w). (9)
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By comparing all definitions introduced so far, one can show thaty

is obtained by solving the following integral equation!?:

y(r,rw) = yolr,rw) + JJdr’dr”xO(r,r';w)
X K(r',r' ', rw) . (10)

Here the kernel K, sometimes called residual interaction or Irre-
ducible particle-hole interaction, is given as follows:

- 62 avxc _
K(r,r)) = T + [ 50 L o(r —ry). (11)

0

Finally, from the dipole part of , o) is obtained as described 1n
Ref. 10.

From a general point of view, expression (11) is oversimplifying
the irreducible particle-hole interaction, first of all, because it is
frequency independent, which seems to “work™ whenever one
studies plasmon-type excitations. But we have the feeling that this
crude approximation would completely fail whenever one has to
study excitonic-type collective excitations. That means, in order to
study the size dependence of excitons in rare gasesZ0 or semicon-
ductors, one should use a better approximation to K or a different
method.

3. RESULTS AND DISCUSSION

In Fig. 2 we reproduce a typical result for the absorption of a jel-
liurmn sodium cluster Na,, (with 100 < n < 200). The frequency 1s
scaled with the classical surface-plasmon frequency @ = %/ﬁ).
Generally, the absorption curve has arich structure, due to the vari-
ous excited states of the clusters. Among these, two different col-
lective states can be identified, namely, the surface plasmon, which
peaks around @ = 0.88 (a little red-shifted from the classical curve,
which peaks trivially at @ = 1). This red-shift is a consequence of
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the quantum mechanical spill-out of the valence electrons leading
toareduced mean electronic density. The fact that this excitation is
a surface mode can be seen directly by inspection of the induced
charge density; at the resonance frequency, its imaginary part dis-
plays a pronounced peak centered at the surface of the cluster. On
the other hand, the fact that it is collective can be recognized be-
cause the plasmon resonance peak has an associated oscillator
strength very close to N, the number of delocalized electrons,
thereby nearly exhausting the associated sum rule.2% This value is
comparable to the “classical” value shown as a continuous curve in
Fig. 2. We would like to stress that all other modes of excitation
gain only very httle oscillator strength (e.g., the various cusps
which are dressed electron-hole pairs, or the weak hump around
w=3). Furthermore, the TDLDA applied to the jellium model for
metal clusters brings about another qualitative prediction which
was confirmed experimentally, several years later, by the Orsay
group for Na,?! K22 and Li.23 As already shown in 1985,10 the fea-
tures of the photoabsorption spectrum change, for n < 100 with re-
spectto the size range n > 100, in which it is dominated by asingle
peak. Indeed, for these smaller clusters, the surface plasmon is
sometimes located in the proximity of a single pair line, which is
collectively enhanced, and gains comparable oscillator strength as
the surface plasmon. In those cases it is a rather intricate task to
identify the “character” of the excitation. Nevertheless, it can be
done by comparing the TDLDA absorption with the absorption of
the free electrons, which do not show any collective mode. This is
demonstrated for the case of Nayg in the bottom part of Fig. 3.
Comparing the free-particle response (dashed line) with the
dressed response (TDLDA, continuous line). we see not only a
pronounced reshuffling of oscillator strength from the low-fre-
quency region to the high-frequency one, but (as a consequence of
the residual interaction) a pronounced new spectral feature in the
proximity of the classical surface plasmon (inspection of the
charge density shows!9 that it is indeed a surface excitation which
18 strongly coupled to the particle—hole pair in its neighborhood).
Because this is the analog to Landau damping for the case of a dis-
crete spectrum, we termed this behaviour Landau fragmentation. It
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FIGURE 2 Typical absorption curve for the TDLDA applied to the jellhum model for the
specific example of Najgg. Continuous curve: Size-independent classical absorption;
dashed curve: size-dependent quantum correction. The character of the various types of ex-
citations can be inferred from inspection of the induced charge density (Ref. 10). In this way
three different types can be identified: (1) surface plasmon (peak at 0.88), (2) the precursor
of the volume plasmon (hump at /5). and (3) various dressed single pair lines (the many
spikes). Only the surface excitation has considerable oscillator strength; the optical excita-
tion of the other modes is a so-called quantum size effect. Within the jellium model the par-
ticle radius R, the number N of delocalized electrons (N = 198) and the Wigner—Seitz radius
ry =4 in a.u. are interrelated by R = N'3r. The frequency  of the incoming photons is
scaled with the classical surface plasmon frequency ® g".

1s a general phenomenon for particle numbers below 100 (Nagg has
already been discussed in the literature?42%). But in contrast to Ref.
25, we found a considerable fragmentation even in Nagy and in
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FIGURE 3 The absorption in Nayg (bottom part) and its interpretation. Continuous line:
TDLDA, the nature of the double structure between 0.5 and 1.0 can be understood in two
steps. In order to facilitate the character of the various humps and spikes, we show as a
dashed line the independent particle response. This is the response at the LDA level (the
analog to Hartree~Fock). Each of the spikes in this curve is a bare particle-hole pair, which
corresponds exactly Lo one of the transitions marked as an arrow in the upper part of the
figure, which shows both the occupied levels (continuous lines) and the empty levels
(dashed lines) of the Kohn-Sham potential of Nazp. Upon turning on the residual interac-
tion, two different things happen: First the bare pairs are transformed into dressed pairs (the
spikes in the continuous TDLDA curve), and second there are new structures in the inter-
acting curve: one hump between 0.75 and 1.0 and a further hump around 1.25. Both humps
are collective in nature. The low-frequency hump together with the low-lying dressed par-
ticle~hole pair constitutes the fragmented surface plasmon, whereas the hump around 1.25
relates to higher multipoles (analog to a similar phenomenon for a flat jellium surface). The
reshuffling of low-frequency oscillator strength can clearly be seen (of course, both curves
obey the so-called f-sum rule).
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Nagi 26 which is roughly in agreement with recent experimental
data of H. Haberland.?’

Recently, two of us have investigated the effect of the ionic skel-
eton on surface plasmons in jellium clusters.?8 The preliminary re-
sult is that the effect of the ions is essentially to change the volume
of delocalization for the loosely bound electrons with the effect
that it improves the performance of the TDLDA with respect to ex-
periment. In a recent work,2% Yannouleas has explicitly demon-
strated within an equivalent formulation to the TDLDA (namely
the matrix-RPA, which detours via determination of wave func-
tions and eigenvalues, and calculates the optical absorption after-
wards, whereas the TDLDA focuses directly on the polarization
propagator) that the bulk limit towards the classical Mie plasmon 18
properly approached by this type of theory. Hence, in our view, the
only thing which is missing now is a quantitative theory of surface-
plasmon damping for large- and intermediate-size clusters. Such a
theory can be developed along the line of Ref. 28 (and Ref. 9in this
work).

4. SUMMARY AND CONCLUSION

The TDLDA applied to the jellium model for metal clusters is able
to account for the main features of the dynamical response of metal
clusters, especially in the case of the alkaline metals. This is true
because pseudopotential perturbation theory?® shows that the
monopole part of the potential is quite similar to the jellium poten-
tial. Consequently, for these metals, the present theory gives not
only qualitatively, but also quantitatively, all the main features of
the dynamical response, except for the surface-plasmon damping,
which can only be obtained by a better description of the ionic
structure. The situation is different for the noble metals (Cu, Ag,
Au). Here, due to the presence of the d-electrons, we need to couple
the free s-electrons to the deeper-lying d-electrons in very much
the same way as we know it from, e.g., bulk silver.

As already discussed above, the TDLDA should be able to work
in these materials, too, if the proper wave functions for the single-
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particle states are used. At the very end we want to comment about
some confusion in the literature.

Whereas there is absolutely no doubt that very small clusters
(e.g., Nag) show collective excitations of the eight delocalized
electrons, one can argue whether or not one should use the term
“plasmon” for this excitation mode. We think one should, because
physically itis exactly the same driving force, namely the electros-
tatic attraction, caused by the charge imbalance, which is active in
both cases; and the kinematic features are the same in both cases:
Essentially all the electrons are moving against a rigid ionic back-
ground. So whereas microscopically there is no reason to avoid the
term “‘plasmon,” macroscopically, one should be a bit careful, be-
cause the volume plasmon is a longitudinal excitation, whereas mi-
croscopically it is a mixed mode [this is the reason for its weak
excitation (see in Fig. 2 the hump around 1.0)]. Of course, in cases
like Napg, the problem is very complex, because it is a new phe-
nomenon—typically for clusters—that the plasmon is nor above
the particle-hole part of the spectrum, but within. Here we have a
problem very similar to that with the volume plasmon at large wave
vectors in the NFE-metals. In order to contrast it to the simpler situ-
ation, we introduced the term “fragmented plasmon.”
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