Y Conotersent Me per Theovies"
5 ?
C/\/dn. Su'enes Pu e sbhavs, ATT )

TOWARDS A FIRST-PRINCIPLES DETERMINATION OF
THE PHASE DIAGRAM OF Cg

J. M. Pacheco

Departamento de Fisica da Universidade
3000 Coimbra, Portugal

and

J. P. Prates Ramalho

Departamento de Quimica da Universidade
Apartado 97, 7001 Evora Codex, Portugal

1. INTRODUCTION

Buckminsterfullerene Cgq, depicted in fig.1a, is a highly symmetric and stable
molecule. Fullerenes are formed, for instance, when vaporised carbon condenses in an
atmosphere of inert gas. The gaseous carbon is obtained e.g. by directing an intense
pulse of laser light at a carbon surface. The released carbon atoms are mixed with
a stream of helium gas and combine to form clusters of some few up to hundreds
of atoms. The gas is then led into a vacuum chamber where it expands and is
cooled to some degrees above absolute zero. Its discovery in 1985 [1] has generated
a tremendous excitement and opened up a new field of carbon chemistry.
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Figure 1. 1la. The Buckminster fullerene Cgq. 1b. Fullerite, the bulk form of Cgq.



A decisive step which opened up the possibility to obtain most of the exper-
imental information we have on fullerenes to date came up in 1990 [2], when the
third stable form of carbon besides graphite and diamond, called fullerite, has been
produced. Tt corresponds to a stable bulk material which has, as constituent units,
the fullerene molecules. Fullerite has been obtained in isolable quantities by causing
an arc between two graphite rods to burn in a helium atmosphere and extracting the
carbon condensate so formed using an organic solvent.

The low-temperature structure of fullerite is identified to be cubic Pa3 with
the molecules orientationally ordered - see fig. 1b. At room temperatures, the Cgo
molecules undergo hindered rotation. As temperature or other thermodynamical vari-
ables are changed, fullerite undergoes several phase transitions, which are well-known
and thoroughly studied - for a review, see ref.[3]. This is so except at temperatures
above 1500 K. At such extreme conditions, the experimental methods are scarse and
rather involved, precluding a detailed study. Theoretically, contradictory predictions
have been advanced in the literature[4,5], in praticular in what concerns the exis-
tence or not of a stable liquid phase. This is unfortunate, since knowledge of the
complete phase diagram of fullerite, besides its invaluable theoretical interest, may
prove relevant for the optimization of its purification process.

In refs.[4,5], computer simulations have been performed to study the different
phase-coexistence lines, in order to answer the fundamental question of whether Ceo-
fullerite has a stable liquid phase. Both works made use of the classical Girifalco
potential [6], arriving at contradictory results: While in ref. [4] no stable liquid
phase would exist for fullerite - which would turn out to become the first pure sub-
stance to exhibit no triple point - in ref.[5] a marginally liquid phase was found to
exist at atmospheric pressure around a temperature of 1800 K. The results, which
start from the same input inter-fullerene interaction and make use of similar computa-
tional techniques, suggest that the high temperature behaviour fullerite may exhibit
a remarkable sensitivity to the details of the inter-fullerene potential. In this context,
it is questionable whether one should address such an important issue making use
of a classical potential. Indeed, one can point out several undesirable features when
using the Girifalco potential to compute the high-temperature phase-diagram of ful-
lerite: Besides its intrinsic phenomenological nature, the inter-fullerene interaction is
basically taken as a two-fullerene interaction only, in which each fullerene is usually
treated as a superposition of non-interacting carbon atoms, therefore disregarding
the individual character and high stability of the molecule as a whole. Furthermore,
in such a framework, three-body terms are neglected, while it has been argued, on the
basis of the large static polarizability displayed by the fullerene molecules, that these
terms might provide a significant contribution [8]. Such features call for a better
theoretical scheme to determine the inter-fullerene interaction. This is the purpose
of the present work, in which an inter-fullerene interaction is worked out from first
principles, not only its two-body part but also its dominant three-body term. This
will be carried out in the Local Density Approximation (LDA) to Density Functional
Theory (DFT) together with its extension for excited states, the Time-Dependent
(TD) DFT [9]. It will be found that the interaction derived here leads systematically
to a good and overall description of several properties of fullerite already determined
experimentally. A comparisen of our results with experimental data and with those
obtained using the Girifalco potential puts in evidence the significant improvement



of the present inter-fullerene interaction with respect to the Girifalco potential in
describing the high-temperature behaviour of fullerite, opening the way to provide
an unambiguous answer in the quest for a stable liquid phase of fullerite.

After summarizing the theoretical framework utilized in this work in Section two,
an analytical parametrization of the ab-initio data will be worked out in Section three,
taking as an input the ab-initio results obtained here, together with those of ref. [10].
This analytic parametrization not only exhibits the right asymptotic behaviour of the
inter-fullerene interation, but also provides the appropriate framework to carry out
the computer simulations. These will be described in detail in Section four, where the
main results will be presented as well. Section five will be devoted to the conclusions
and future prospects. A summary of some of the main results presented here has
been published elsewhere [11].

2. THEORY

The Local Density Approximation (LDA) for Exchange and Correlation (XC) in
Density Functional Theory (DFT) has been shown to provide an accurate description
of structural and electronic properties of a wide variety of materials, including the
different stable forms of carbon [3,10]. This is so for structural situations in which the
electronic densities of the interacting molecules overlap. Each carbon atom is often
represented by means of a norm-conserving, transferable pseudopotential [12], leav-
ing as active 4 valence electrons per atom. In this context, the calculation of ref. [10]
typifies a state-of-the-art LDA calculation of fullerite, the results of which we shall
utilize below. In such a framework, the ionic coordinates which specify the lattice
arrangement of Cgo molecules constitute the starting point of the calculation. For
each lattice configuration, the total energy £ ({R }) is determined using an efficient
algorithm based on iterative diagonalization to obtain the self-consistent solution of
the Kohn-Sham equations. For the bulk forms of carbon, such-a procedure is most
efficiently implemented in a plane-wave-basis super-cell method, although its compu-
tational burden for the specific case of fullerite requires the use of a supercomputer.
For the equilibrium configuration of fullerite, the nearest neighbour bond-lengths
within each fullerene, as well as the inter-fullerene distance have been allowed to
relax in order to minimize the total energy [10]. Subsequently, the total energy of
fullerite has been computed in ref. [10] as a function of the inter-fullerene distance,
for fixed carbon-carbon bond-lengths (see ref. [10] for details). Although one should,
in principle, relax the carbon-carbon bond-lengths at each value of the inter-fullerene
separation, such corrections would lead to total energy variations which have been
estimated to amount to = 7%. From the results of ref. [10] we shall extract the inter-
fullerene interaction energy at small and intermediate distances. At large separations,
we shall make use of the formalism described on the following.

As is well known, LDA-DFT is unable to describe correctly the long range be-
haviour of, e.g. the inter-fullerene interaction energy, which is dominated by disper-
sion interactions. This feature, which constitutes one of the major drawbacks of the
theory, can be circumvented if we consider its linear response-extension - TDLDA
- for the description of excited states. Indeed, the long-range dispersion forces be-
tween fullerenes can be accurately calculated within TDLDA | once we compute the



polarizability tensor of one fullerene molecule, which constitutes the key ingredient
[13] for the determination of the two-body van der Waals as well as the three-body

Axilrod-Teller interactions, as can be seen from the following standard expression for
the dispersion coefficients:
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In the expressions above, Cs is the leading order van der Waals coefficient, Cjg is the

second term in the van der Waals expansion of the interaction energy as a function
of the inter-fullerene distance z,
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whereas Car is the leading three-body dispersion term. All these three coefficients
can be espressed in terms of the dipole polarizability ag(iE) (Ce,Car) and the
quadrupole polarizability aq(iE) (Cs) tensors, computed at purely imaginary en-
ergies 1E.

In keeping with this discussion, we computed the long-range interaction energy
between two and three fullerenes via direct integration of egs.(1-3), in which we em-
ployed the dipole and quadrupole polarizability tensors of Cgq computed in TDLDA.
The method we utilized extends to imaginary frequencies the linear-response method
in coordinate space developed in ref. [14], which is well suited when applying the
TDLDA to isolated molecules. In short, we start by solving the Kohn-Sham equations
via the expansion of the solutions in a spherical basis, ¥x(7) = Y em Chpm Prem (),
where ¢nem(7) = Rne(r) Yom(7). We use the same pseudopotentials as those used
in ref. [10], as well as the same XC functional. The functions ¢nem (7) have been
obtained by solving numerically the spherical part of the Kohn-Sham equations in a
spherical box of 11.6 A (22 ao) of radius and using a mesh with a step of 0.01 A. The
coefficients CF,  of the expansion above have been obtained by including multipole
moments of the ionic field up to L = 20 and all the spherical wave-functions with
eigenenergies up to 40 eV. This means that spherical wave-functions having angular
momenta in the range 0 < £ < 20 and number of nodes n = 0,1, 2, ..., 15, have been
considered. The energy gap between the highest-occupied and the lowest-unoccupied
molecular orbital states (HOMO-LUMO gap) is predicted to have a value of 1.91 eV
as compared to the value of 1.86 £ 0.1 eV measured experimentally [15]. The band
width is predicted to be =2 21 eV, being controlled, to a large extent, by the non-
local part of the pseudopotential. Making use of the single-particle basis discussed
above, the dipole response of Cgp has been worked out in the Time-Dependent Local



Density Approximation (TDLDA). The basic quantity to be calculated is the free
density-density correlation function
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The induced density within TDLDA corresponds to the self-consistent solution of the
following equation,
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the multipole field, for which the values A = 1 and A = 2 correspond to dipole and

quadrupole fields, respectively. Inserting in eq. (5) the multipole expansion of W,
we can write
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Expanding én and V in spherical harmonics, the relation (6) transforms into a set of
coupled linear equations in r—space. In the case of a dipole field,
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and similarly for the quadrupole case. These are the basic equations which we shall
solve in the next section, and from which we shall extract the long-range behaviour
of the inter-fullerene potential.

3. RESULTS AND PARAMETRIZATION

For each value of iw, we perform the Sum-Over-States in eq.(5) in order to
compute the unscreened density-density correlation function 9. This proves useful
to check the convergence of this function which, in our case, is achieved by including
~ 2 x 10* one-clectron states in the calculation, corresponding to a cut-ofl at 40
eV. No approximations are introduced in the incorporation of screening, since we
compute it self-consistently by solving the integral equation for the induced density,
eq. (8), via a discretization of its multipole components in coordinate space. With
this formulation we obtain, for the static linear polarizability of the fullerene molecule,
a value of 90 A3, a value which has been recently corroborated, independently in
ref. [16]. This value should be compared with the expected experimental value,
which should fall in the interval 89-92 A3, obtained when one relates the static
polarizability of the fullerene with the dielectric constant of fullerite via the Clausius-
Mosotti relation [14]. In our calculations we utilized the same pseudopotentials [12]
used in the plane-wave calculations of ref. [10], as well as the same XC functional, for
which we took the Ceperley and Alder results [17] as parametrized by Perdew and
Zunger [18]. We took advantage of the high (icosahedral) symmetry associated with
the fullerene and computed the polarizability tensors with respect to the principal
axes of the molecule in which both the dipole and quadrupole tensors are diagonal.

As expected [13], the polarizability is a smooth function of its purely imaginary
argument, as one can judge from fig. 2, where the dipole and quadrupole polarizabil-
ties are plotted as a funtion of the imaginary energy i£. Such a smooth behaviour
makes it trivial to carry out the numerical integration of egs. (1-3).
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Figure 2. Linear dynamic dipole (shaded area) and quadrupole (dashed area)
_polarizabilities of fullerene Cgg as a function of ¢E. The scale and units of the vertical
axis in fig. 2 apply to the dipole polarizability. As indicated in the figure, the
quadrupole data has been rescaled by one order of magnitude for direct comparison
with the dipole polarizability.



Making use of the results displayed in fig. 2 we integrated egs. (1-3) obtaining,
for the dispersive two and three-body coefficients the results given in table 1 under the
column FREE and TDLDA, in which we also compile results for the same quantities
obtained at other levels of approximation. From table 1 one can judge the role of
screening in the determination of the polarizability, which correctly brings the values
of the (FREE)dispersion coefficients to the right orders of magnitude (TDLDA).
Furthermore, one also concludes that the TDLDA results are very close to those
obtained at other levels of approximation, at least in what concerns the Ceg van der
Waals coeficient. On the other hand, only in the present calculation one has been
able to compute, consistently with the 2-body terms, the 3-body dispersion coeflicient
Car.

Table 1 Girifalco Girard Bulgac FREE TDLDA
Cs (eV A79) 20 N2, 17 N2 15 2, 144 N2, 21 N2,
Cs (eV A=8) | 2520 N2, 2470 N2, | 14709 N2, | 2534 N2

Car (eV A79) 580 N2, 92 N3,

Table 1 Values for the van der Waals coefficients Cg and Cjg, and for the Axilrod-
Teller coefficient C a7 obtained using different levels of approximation (see main text
for details). Ny, is the number of atoms in a single fullerene (60). The values under
the column Girifalco have been obtained by extracting the appropriate coefficients of
the asymptotic expansion of the Girifalco potential. Those under the column Girard
correspond to the semi-classical estimate of ref. [19], whereas those under Bulgac
have been obtained integrating eq.(1) (transformed into the real-frequency domain
by the usual dispersion relations) and utilizing for o{w) the values obtained in ref.
[20] making use of a Tight-Binding formulation. The FREE results correspond to
LDA results without inclusion of screening. Finally, in TDLDA the polarization of
the electron cloud in the presence of an external field is included at the level of linear
response. The values used in the production of the data plotted with solid squares
in fig. 3 correspond to the results tabulated here under the column TDLDA.

Making use of the coefficients of table 1, and inserting their value into eq. (4),
one can compute the long-range interaction energy between two fullerenes. This is
plotted in fig. 3 with solid squares. Of course, in order to be able to parametrize
the inter-fullerene interaction energy at all distances, one must complement the long-
range calculation with consistent data obtained at intermediate and small distances.
To this end, we make use of the results of ref. [10] in the way explained below, leading
to the set of solid circles drawn in fig. 3.
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Figure 3. 3a Different contributions to Vapoay(z): The Morse potential M (z) is
drawn with a dotted line, and determines the exponential behaviour of Vapeqy () at
short distances. The long-range tail, represented by the van der Waals tail W (zx) is
drawn with a dashed line. Finally, the crossover function of Fermi type F(x) delimits
the dashed area and acts as a switch between the 2 limiting functions M (z) and
W (z). Vapody(x) is drawn with a solid line, following the same notation as in fig.
3a. The ab-initio data taken from ref. [10] are drawn with solid circles, whereas
the long-range interaction energy computed here (see main text for details) is drawn
with solid squares. The ab-initio data drawn have been used in the non-linear fit
which resulted in Vapoay (). 3b Comparison of Vapeqy () with the classical Girifalco
potential used in most of the computer simulations carried out so-far.

In ref. [10] the cohesive energy of fullerite in an FCC primitive cell, as a func-
tion of the cell size parameter a, has been computed for small and intermediate
inter-fullerene separations, at which there is still an overlap of the change densities.
From the cohesive energy, we extracted the two-body interaction energy by assuming
that the inter-fullerene interaction is pairwise additive, and takes place only between
nearest neighbours. This seemingly crude assumption has been estimated in ref. [6]
to lead to small errors. Indeed, the contribution from second and third nearest-
neighbour interactions does not seem to exceed 4% which, in turn, makes our error
fall within the level of accuracy one expects for our parametrization. The resulting
data is displayed in fig. 3 with solid circles. In this way, we consistently computed
the short distance repulsive potential, the long distance dispersive interaction, as well
as we have obtained the potential behaviour near equilibrium. In fig. 3a, the dashed
line corresponds to the Girifalco potential [6] used in most of the high-temperature
Monte Carlo and/or Molecular dynamics simulations of fullerite, and which results
from the superposition of atom-atom potentials of Lennard-Jones type. The solid
line corresponds to the fit to the ab-initio data which we discuss on the following.

The ab-initio results clearly establish the asymptotic behaviours at short and
long distances, evidencing a stiff repulsive wall at short distances together with the
appropriate van der Waals tail. In order to parametrize this interaction we considered



two functions which display, individually, the expected limiting behaviour [21] of
a two-body interaction at short and long distances: A Morse potential M(z) =
Moezp|T(1 — x/do)][exp[r(1 — z/do)] — 2] for the short range part [22], and a van der
Waals expansion W (z) = —Cs/z% — Cg/3% — C10/z° — C12/2'? at long distances.
The crossover of these two regimes has been obtained via a third function of Fermi
type namely F(z) = [1 + exp((z — 1£)/8)]"L. The final form of the potential reads,
then

Vabody(z) = F(z) x M(z) + [1 — F(z)] x W(z)

In the non-linear fitting procedure, we varied freely the parameters 1A, Mo, 7,Cr10,Cl2-
The results obtained are given in table 2, whereas in fig. 3b we distinguish the relative
role played by each of three functions which enter the final form of Vasoay (z). As can
be seen from fig. 3 the quality of the fit is good, following the ab-initio data rather
closely.

My (eV) 7| do(A)| Cro (eVA~10) Cpp (eVA~2) u(A)| 6(A)
0.3 | 9.75 10.3 2.09 . 10® 7.78 .10 | 10.05| 1.04

Table 2 Values for the quantities defined in main text, obtained as a result of the
non-linear fit of Vapeqy to the ab-initio data. The resulting interaction, Vapody, 18
plotted in fig. 3.

Moreover, Vapody(z) is deeper than the pure van der Waals expansion (solid
squares in fig. 1) as one approaches the region of overlap between the fullerene

densities, in agreement with the general properties expected for this type of potential
[21].

4, MONTE CARLO SIMULATIONS

In order to test the quality of our potential we have carried out several Monte
Carlo (MC) simulations in a canonical ensemble. We computed the equilibrium pres-
sure as a function of fullerite density, and we computed the equilibrium density of
fullerite as well as the energy per particle at room temperature and at zero pressure.
The simulations were performed at different densities for a 266 Csp molecule system,
using the usual periodic boundary conditions and starting from a perfect FCC lat-
tice. The intermolecular potential was truncated at 20 A. For cach simulation we
let the system thermalize for 2000 MC steps. After this equilibration stage, 4000
MC steps were made to compute the thermal averages. Values of the equilibrium
pressures calculated from the simulations for different densities are shown in fig. 4
compared with experimental data. The overall agreement is good for the whole range
of pressures and puts in evidence the large compressibility of fullerite. The results
displayed in fig. 4 with solid circles show that the trend observed experimentally
(represented with solid squares and taken from ref. {23] is nicely reproduced with the
present potential, in sharp contrast to the results obtained by performing the same



simulations using the Girifalco potential, displayed with solid triangles.

The good agreement obtained at high pressure is due to the relative softness of
our potential compared with previous potentials including the Girifalco [6] and the
12-6 carbon-carbon interaction [24]. As these potentials consider rigid molecules, one
could think that the use of a "soft” model for the molecule could be more effective
at high pressures. Nevertheless, there are experimental [25] and theoretical [10] evi-
dences that the Cgp molecules are extremely resilient to pressure and the geometric
structure of the molecule remains stable upon hydrostatic compression, at room tem-
peratures, up to about 20 GPa, suggesting that the interaction is too complex to be
well described by such classical site-site models.

For the equilibrium density and the cohesive energy of fullerite (per mole) at
equilibrium density and zero pressure, we obtain 1.40 10*! em™ and 160.7 kJ/mol,
respectively with Vopoqy, whereas experimentally one finds 1.44 102! em~3 and 167.9
kJ/mol, respectively.

Finally, we assessed the role of the Axilrod-Teller interaction in the determination
of the same properties, for which we repeated the same simulations using not only
Vabody (z) but also the Axilrod-Teller term. We found essentially no changes as the
equilibrium density or the density-pressure behaviour were concerned, but we found
a 6% contribution to the cohesive energy. As usual, the role of these three-body
terms is mostly repulsive, so we obtained an overall increase of 6% in the cohesive
energy of fullerite. As pointed in ref. [8], the high static polarizability of fullerene
Ceo would a-priorisuggest a contribution from the three-body dispersion terms larger
than the 6% obtained here. However (and this is particularly clear if one uses the
real-frequency expressions for the van der Waals coefficients) the charge density waves
in the fullerenes occur at very high energies (= 20 eV), a feature which acts to reduce
the effective value of the dispersion coefficients, thereby determining the contribution
obtained, which can be considered as a normal contribution.
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Figure 4. Molar volume of fullerite as a function of pressure. The solid squares
display the experimental data taken from ref.[23]. The solid circles show the results
of our Monte-Carlo simulations carried out with Vapeq, (see main text for details),
whereas the solid triangles display the corresponding results when the simulations
were carried out with the Girifalco potential.



5 SUMMARY AND OUTLOOK

We obtained a parametrized two-body inter-fullerene interaction derived from a
parameter-free LDA calculation of the cohesive energy of fullerite, which exhibits a
long-range behaviour governed by a dispersive inter-fullerene interaction computed
consistently at the level of TDLDA. Furthermore, and making use of the same frame-
work, we have computed the dominant contributions to the three-fullerene interac-
tion via the calculation of the Axilrod-Teller coefficient C'47r. The major drawback
of our method is the assumption that the fullerene-fullerene interaction in fullerite
is pairwise and additive, thereby neglecting short-range n-body (n > 2) interactions.
Although this effect has been argued to be small, it is included in an average way In
our two-body interaction by means of our assumption, and therefore our interaction
Vapody cannot be considered as a pure two-body term. Yet, this effective interaction
has provided results which not only reproduce the trends observed experimentally,
but also provide an overall agreement with experimental data which is good. Three-
body dispersive interactions (not to be confused with the many-body correlations
included in an average way before) ‘are found to provide a repulsive contribution to
the configurational energy of the order of 6%. This can be considered a "normal”
contribution, in the sense that lies in the range which one usually obtains for van
der Waals fluids. Yet, we believe that three-body terms may prove important in the
quest for a stable liquid phase of Cgg. Indeed, following the results of ref. [7], which
make use of a Morse potentials, and performing a Morse fit to the ab-initio data,
we obtain a potential which, again, is just on the borderline for meeting the crite-
ria which ensures the existence of a stable liquid phase. Therefore, the three-body
Axilrod-Teller interaction should not be overlooked when simulating the liquid-vapor
and solid-vapor coexistence lines in fullerite. Work along these lines is in progress.
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