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1.1 INTRODUCTION

The jellium model, known from the study of the electronic properties of NFE (nearly
free electron) metals [1] and from the understanding of the electronic properties of free
metallic surfaces [2], is applied to the calculation of the electronic properties of metal
clusters, mainly to the group Ia (alkaline metals) and to the group Ib metals (noble metals).
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The model is shown to give results that are very often in guantitative agreement with
experimental data and serve in most other cases as a good starting point for the calculation
of the effects of the ionic structure, e.g. via pseudopotential perturbation theory.

Main experimental findings both for the ground state (magic numbers for the stability
of clusters [3] and the existence of supershells [4]) and for excited states (the domi-
nance of collective states in the photoabsorption of metal clusters Mey with N > 8) were
predicted [5] before their experimental confirmation. Recently we were able to explain the
temperature dependence of the absorption of small metal clusters as observed by Haber-
land’s group [6]. If the model is complemented by pseudopotential perturbation theory [7]
the results obtained match qualitatively those obtained by demanding quantum-chemical
methods (e.g. the photoabsorption spectra of Nag). Further improvement of the model
includes the removal of self-interaction effects, the so-called SIC [8-10] (a consequence
of using the local density approximation (LDA) to general density functional theory
(DFT)).

The development of the super-atom model for the description of electronic properties
of metal clusters arose from the attempt to understand and interpret experimental data
by W. Schulze and co-workers Figure 1.1 shows the absorption of small silver particles
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Figure 1.1 Optical absorption of small silver particles Agy embedded in argon at low temper-
atures, according to Ref. [11]. The huge absorption hump is a collective electronic oscillation
localized at the interface Ag/Ar. This figure historically gave the impact for the development of the
super-atom model for metal clusters. For large clusters a broad, damped peak is observed, whereas
for small clusters the line is fragmented
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(in arbitrary units) as a function of wavelength with the mean diameter of the clusters
as parameter. As one can see, there is a pronounced blue-shift of the absorption hump
as the cluster size decreases. If one tries to understand the observed absorption within
classical, macroscopic electrodynamics, one has to look at the imaginary part of the
dynamical polarizability of a small metal particle embedded in a dielectric host. The
textbook solution for a spherical particle of radius R is [12]

. 3 £lw) — gq(w)
¢(w) =R ———,
e(w) + 2e4(@)

where e(w) and &q4(w) are the dielectric constants of bulk silver and the dielectric host,
respectively. As in the case of bulk plasmons, defined in terms of the vanishing of £(w),
collective interfacial excitations are characterized by the vanishing of the denominator,
which means that there is an eigenoscillation in the absence of external stimuli [13].
Since both dielectric constants are size-independent, one sees immediately that classical,
macroscopic electrodynamics does not work in this size regime. Therefore one has to
resort o microscopic or mesoscopic models.

The first, most primitive, model is the infinite barrier model (IBM). Here the electronic
motion is confined by a spherical potential hole with infinitely high barriers. Once the
electronic wave functions (spherical Bessel functions) and eigenvalues are known, one
can proceed and calculate the dynamic polarizability e(w). From this quantity the collec-
tive excitations are determined in a straightforward manner (see below). The theoretical
prediction [50], shown in Figure 1.2, matches the experimental data (indicated by dots)
rather well from very small to mesoscopic particle sizes. The result obtained shows that
the IBM, which models the kinetic repulsion of the occupied 4d-shell of atomic Xe, works
surprisingly well. This repulsion causes an enhanced electronic density, leading to the
blue-shift of the surface-plasmon line.

For the description of fiee metal clusters, as observed and investigated in supersonic
beams, the electrons relax (and tunnel) into the neighboring vacuum. In order to model
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Figure 1.2 Crude theoretical interpretation of the experimental data of Figure 1.1. Here the elec-
tronic motion is confined by the IBM (infinite barrier model). For details see the original work by
Ekardt ef al. [50]. Reprinted by permission of Elsevier Science Publishers
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this situation, it is useful to recall the series of papers by N. D. Lang and W. Kohn [14, 2],
who applied the self-consistent jellium model to the study of the electronic properties of
free metallic surfaces. A study along this line provides a first qualitative understanding
of these properties, which is often even quantitatively correct (in the case of some alkali
metals), and serves in all cases as a good starting point for refined models [15, 16]. As
the defining property of a metal cluster is the very existence of its surface, the jellium
model can be expected to produce good first-order results for clusters as well. These can
be improved, if necessary, by pseudopotential perturbation theory to include the etfects of
the ionic structure (see below). Without any detailed calculation one can predict that the
relaxation of the electronic cloud leads to a reduced density, and this in turn to a red-shift
of the surface-plasmon line. Therefore, if this were the only active mechanism (as in
the alkalines) and if there were no complications because of the dynamical coupling to
d-electrons, as in Ag, one can immediately predict the experimentally observed red-shift
of the surface-plasmon frequency of free alkaline metal clusters. In contrast, the surface-
plasmon of neutral Ag-clusters in a molecular beam undergoes a blue-shifi [17]. Most
probably this is the effect of dynamical coupling to d-electrons. The frequency position
of the plasmon of the s-electrons cannot be understood without taking into account their
dynamical coupling to the d-electrons [13, [8]. For Ag clusters, there is the additional
complication of the size-dependent hybridization between s and d electrons, respectively.

In this work we start with the primitive jellium model, as appropriate for alkaline metals.
In the jellium model for metal clusters a fundamental input is the size-dependent ionic
density. Fortunately, when one of us started this calculation in 1984 [3], some experi-
mental data about the size dependence of the nearcst-neighbor distance were available
from EXAFS (extended X-ray absorption fine structure) measurements [19]. Except for
fine details the size dependence is very weak. This means that in a first approximation
the bulk density of the metal can be used as input for a cluster calculation. A second
question is the size dependence of the shape. Since electron micrographs very often show
a spherical shape, at least for the larger clusters, a spherical shape will be assumed for all
cluster sizes. This means that for monovalent systems the radius R of the jellium cluster
is determined by its bulk density n .,
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where g is the Wigner—Seitz radius of the electron gas and N is the number of delocalized
valence electrons within the cluster.

1.2 PROPERTIES OF THE GROUND STATE

The properties of metal clusters within the jellium model were first studied within the
local density approximation (LDA) to the density functional theory (DFT) [3]. This means
the following set of equations has to be solved self-consistently, starting from a proper
initial density (for details see [3]). The total electronic density p(r) obeys the subsidiary
condition

j,o(r)dr:N, (3)
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where p is found by minimizing the total energy functional Ey[e] [20]:

Biilili= f drue(r)p(r) + Glpl, @)

Glp] = Exinlp] + Ees[0] + Exclp]. (5)

E,in describes the kinetic energy of the system of correlated electrons, Eg the classical
Coulomb repulsion and Ey. the exchange—correlation energy. The traditional approxi-
mation to the unknown exchange—correlation part of the functional is the local density
approximation [21]. The exact density, which determines the total energy in the ground
state, is found by solving the Kohn—Sham equations [21]

TZ
(—iA + 'Ueff[p(r)]) Wi(r) = enfi(r), (6)

where the electronic density p(r) is given by

N
pir) =23 1%, ™

i=1

N is again the number of valence electrons and the factor of 2 accounts for the spin
degeneracy. If the Gunnarsson—Lundgqvist parameterization for the exchange and correla-
tion potential is used [22], the effective potential veg is given (in Rydberg atomic units) by
, prh 1.222
lr —r'| Fs(r)

: 11.4
verr(r, p) = VP9 (r) +2 ] dr — 0.06661n (1 + ) (8

re(r)

1.”36(1’) is the external potential caused by the positive jellium background. The Wigner—
Seitz radius ry(r) is obtained by

3
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This set of equations has to be solved self-consistently, with some suitable initial density
(for numerical details see [3]). This was done first for sodium as a function of the number
of atoms N (which agrees with the number of delocalized electrons for monovalent
metals). The set of equations was solved for N = 2,3, 4, ... up to 254. Figures 1.3 and 1.4
show typical charge densities and potentials for a small (N = 20) and a large (N = 198)
particle number, respectively. The oscillatory electronic charge density is normalized to
the constant background charge (the step-edge in the figures), and the continuous lines
depict the occupied levels. The quantum numbers are those of a spherical potential. Hence
the bottom level is 1s, followed by Ip, 1d and 2s (for N = 20) with the usual meaning of
s({=0),p(¢ =1 andd (! =2)in terms of the angular momentum . The level scheme
transforms from a pronounced discrete structure, reminiscent of an atomic system, to the
quasicontinuum of a mesoscopic system. Since level structure and nomenclature are like
those of a very large atom this model was termed the super-atom model of metal clusters.
The first physical quantity of interest is the size dependence of the binding energy

E(N)—=NE(1)

8(N) = N -

(10)
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Figure 1.3 Electronic charge density, effective potential and occupied levels for Nay as obtained
within the jellium model. The electronic charge density is normalized to a constant ionic background
(step-edge). For further explanation see text. Reproduced with permission from Reference [3].
Copyright 1984 by the American Physical Society
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Figure 1.4 Same as Figure 1.3 but for Najog. Comparing with Figure 1.3 one clearly sees how the
system transforms from a discrete atomic-like level structure to the quasicontinuum of a mesoscopic
system. Reproduced with permission from Reference [3]. Copyright 1984 by the American Physical
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Figure 1.5 Total energy E(N)/N for Na clusters. The pronounced dips at N =2, 8, 20, 40,
58 and 92 constitute so-called magic numbers, indicating especially stable cluster sizes. While
small magic numbers coincide with shell-closings, the situation is different for larger numbers. For
more explanation see text. Reproduced with permission from Reference [3]. Copyright 1984 by the
American Physical Society

which requires the calculation of the total energy as a function of size N, with the
Wigner—Seitz radius r; as a parameter. Figure 1.5 shows the quantity Z{N)/N in units
of its limiting value for N — oo for the case of Na. The most remarkable property
of this result is that the value at infinity is approached not in a monotonic but in a
proncunced oscillatory fashion. In order to show the origin of this property more clearly,
the bottom line indicates the symmetry of the top level, i.e. of the shell that is being
filled. Looking at small particle numbers, one is tempted to conclude that these ‘magic
numbers’ simply result from the closing of the spherical shell (hence N = 2, 8, 20, ete.
are expecled to be magic). That this conclusion is (at least generally) wrong can be seen
by looking at medium-size numbers N. For instance, between N = 58 (closed 1g shell)
and N = 92 (closed 3s shell) there are two more shell-closings (2d at N = 68 and 1h at
N = 90), that do not produce magic numbers. Therefore one can state that the closing
of a spherical shell is a necessary but not sufficient condition for the existence of magic
numbers. By inspection of the single-particle level structure one easily recognizes that
magic numbers are accompanied by especially large gaps between the highest occupied
and the lowest unoccupied molecular orbital, the so-called HOMO-LUMO gaps. This
property is genuine for the jellium model.

Two features of the jellium description of the super-atom model are experimentally
confirmed:

(a) The detailed geometrical structure of the ionic skeleton is of marginal importance [23].

(b) The central property of the model, namely the quasifree motion of the delocalized
electrons and especially their mutual correlation is the essence for the stability of
metal clusters of this kind (all group Ia (alkali metals) and Ib (noble metals) and in
addition a few divalent and three-valent metals.

These predictions made in February 1984 have been experimentally confirmed by
pioneering experiments of the Berkeley group in June 1984 (see Figure 1.6) [24]. Whereas
W. Knight in his early 1984 experiments focused on small mass numbers, these mass-
abundance spectra have been afterwards extended to larger atomic numbers. S. Bjgrn-
holm [23] was able to confirm that all magic numbers found for N < 1000 are those of
the jellium medel (Figure 1.7). Notice the absence of magic numbers between N = 58
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Figure 1.6 Early mass-abundance spectrum of the Berkeley group [27]. Magic numbers are clearly
identified. Substructures between the main magic numbers were later sufficiently well explained
within the deformed jellium model by Keith Clemenger [28] and Ekardt and Penzar [29]
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Figure 1.7 Experimental mass spectra by Bjgrnholm e al. [23] for several hundreds of Na atoms.
Note the absence of magic numbers between 58 and 92 and between 92 and 138. This can be
considered as a direct confirmation of the jellium approximation. Reproduced with permission
from Reference [23]. Copyright 1990 by the American Physical Society
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Figure 1.8 Experimental mass spectra of Na up to N = 22000 [25]. All magic numbers up (o
N = 1500 can be understood within the jellium model and it is only for still larger atomic numbers
that the mass anomalies can be attributed Lo the formation of ionic shells. Reproduced by permission
of Springer-Verlag from Reference [25]. Copyright by Springer-Verlag

and N = 92. In 1991 T. P. Martin [25] was able to take mass spectra for sedium clusters
for up to 22 000 atoms, with the remarkable result that all magic numbers N' < 1500 could
be explained within the framework of the super-atom model. It is only for even larger &
that mass anomalies (sce Figure 1.8) could be related to atomic rearrangements [25].

The next physical quantities of interest are the size dependence of the ionization poten-
tial and of the electron affinity because these quantities can be related to the chemical
reactivity of metal clusters. Within the DFT jellium model the size dependence of the
jonization potential is easily obtained from two total energy calculations:

Ap[N] = E¥[N — 11— E°[N]. (1)

Here E*[N — 1] denotes the total energy of a positively charged cluster with N — 1
electrons and E°[N] the total energy of the neutral system. Since the total energy functional
consists of various pieces (see Eqgs (4) and (5)) this quantity can be written as follows:

Ap[NT = Aeg + Arest. (12)

For N — oo the first term tends to the electrostatic dipole barrier ve(+00) — ves(—00),
i.e. the difference between the electrostatic potentials far outside and deeply inside the
metal, and the second term equals the chemical potential. In this limit Ap is the work
function of the solid [2].

Figure 1.9 shows the theoretical results for Ajp[N] and A, for the case of Na together
with the limiting values of the work function (3.02 eV) and the electrostatic surface
barrier (0.98 eV), respectively (dashed lines). Whereas Ap[N] shows large discontinuities
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Figure 1.9 Tonization potential for Na clusters in the jellium model [3]. Notice that the total
ionization potential does not approach the bulk value in a monotonic fashion but with a pronounced
sawtooth behavior. In contrast, the electrostatic part of the total IP is monotonic. Here the two
horizontal dashed lines represent, respectively, the total work function of the infinite half-space
@, and the electrostatic surface barrier ®%. Reproduced with permission from Reference [3].
Copyright 1984 by the American Physical Society

at shell-closings, A, is smooth and approaches the limiting value in a monotonic way.
A, corresponds to the additional amount of work required for ionizing the finite piece of
metal and is approximately given by ¢*/(2R), the classical electrostatic self energy of one
surface charge. This close agreement is related to the fact that also quantum-mechanically
the remaining charge is confined mainly to the surface region, except for fine details
originating from Friedel oscillations [3, 20].

Experimental data for the ionization potential (IP) are shown in Figure [.10 [27]. The
ionization potential shows large even—odd oscillations for small particle numbers, but
no pronounced sawtooth patterns for medium-size numbers, in contrast to the theoretical
predictions. This suggests that an important ingredient is lacking in the model. Indeed,
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Figure 1.10 Experimental ionization potential (IP) of K clusters [27]. Note that the total IP shows
strong discontinuities at magic numbers, whereas the predicted rise of the IP between two magic
numbers is missing. As has been shown by Penzar and Ekardt [31] this can be reproduced within
the self-consistent deformed jellium model. Reproduced by permission of Academic Press
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noticing that at spherical shell-closing, the predicted strong discontinuities in the IP
are experimentally confirmed, one realizes that for any open shell (all numbers except
magic ones) the electronic charge density is non-spherical, a situation that can give
rise to a Jahn—Teller distortion of the jellium nucleus. K. Clemenger [28] was the first
to study spheroidal distortions of the jellium sphere by using the non-self-consistent
Nilsson model of nuclear structure theory. His work was quickly followed by a complete
self-consistent many-body calculation for the study of two-axial distortions of the jellium
sphere [29]. Brack [30] was the first to study three-axial distortions of the jellium nucleus
by using ideas from nuclear structure theory. If one includes these axial distortions one
can successfully explain both the ionization potential and the electron affinity for open-
shell clusters [30, 31]. Furthermore, fine details of the mass-abundance spectra are better
understood.

In order to better understand the origin of the spheroidal distortion, let us recall the
appearance of the electronic charge density for any particle number N,

pr) =2 3" Y1, $PIRuy s (DI (13)
npdom

Because of the relation
m=-+{

5 1
> Y6, ) = -, (14)

=

the total electronic charge density is non-spherical for all particle numbers except the
magic numbers. According to general rules of quantum mechanics, a Jahn—Teller defor-
mation of the external field is to be expected. This is efficiently achieved by introducing
the distortion parameter § describing the replacement of a sphere with radius R by a
spheroid whose axes are given by
2/3
7 {ﬂ] R,

2-5
281
X,Y:[m} R (15)

The introduction of § makes the external potential axial symmetric. Consequently, the
spherical symmetry of the wave functions is replaced with a spheroidal symmetry. As
before, the radius R is determined by the particle number N and the Wigner—Seitz radius
rs as follows: k

R=N'"r,. (16)

The total effective potential determining the electronic motion via the Kohn—Sham equa-
tions is expected to be spheroidal as well. Therefore all spherical shells n, [, m are expected
to split into spheroidal subshells |m|, p, k. Here m is the preserved azimuthal quantum
number. For time-reversal symmetry only its magnitude |m| counts; p is the parity and &
just enumerates the levels of a certain symmetry. The reduced spheroidal symmeiry lifts the
spherical degeneracy as depicted in Figure 1.11 for Na in the size-range of N from 3 to 18.

An immediate consequence of this spheroidal nature of the one-particle Kohn—Sham
levels is the substructuring of the formerly spherical shells into spheroidal subshells. This
is made evident in Figures 1.12 to 1.14. Figure 1.12 shows the-analog to Figure 1.11
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Figure 1.11 Evolution of the level structure as function of size N in the range 3<N <18 In
each case the deformation parameter 8, defined in Eq. (15), is given. For comparison, the spherical
levels are also given. As one can see clearly, the spherical level structure is heavily perturbed in
the midshell region. Note that in the case of N = 18 the cluster ends up with a spheroidal distortion
(because of the interplay between 1d. and 2s levels). For N = 13, both prolate and oblate levels
are given, because the two have a total energy, which is close (for the possibility of a three-axial
distortion in this case, see [30]). Reproduced with permission from Reference [29]. Copyright 1988
by the American Physical Society

(spherical to spheroidal behavior). Figure 1.13 gives the second energy difference As
defined as:
A (E) = Enyy — (En + E1) — (Ey — (Ex—1 — E1))- (17

As has been shown [27], this quantity is decisive for the mass abundances observed experi-
mentally in a supersonic beam experiment. Finally, we show in Figure 1.14 the ionization
potentials obtained within the spheroidal jellium model. Note that there is a pronounced
odd—even alternation, as in the abundances, and that this effect is purely electronic and
produced without regard to the spin of the electrons and also without any pairing effects
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1

Figure 1.12 Energy per particle in units of |¢,|. The solid line shows the data from the spheroidal
jellium model, the dashed line the corresponding data from the spherical jellium model. The results
are for N < 41. Reproduced with permission from Reference [29]. Copyright 1988 by the American
Physical Society

Figure 1.13 Second difference A, of the total energy as function of N. Solid line: distorted
jellium; dashed line: spherical jellium. Reproduced with permission from Reference [29]. Copyright
1988 by the American Physical Society
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Figure 1.14 Tonization potential in various approximations. Note that the spherical sawtooth
behavior is completely destroyed after allowing for spheroidal distortions. Originally it was believed
that the strong odd—even alternation was related to the spin of the electrons. But, as shown first

by the first author [29], it is a kinemaric orbital effect. Reproduced with permission from Refer-
ence [29]. Copyright 1988 by the American Physical Society ..
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Figure 1.15 Comparison of the electron affinity within the spheroidal jellium model plus SIC and
various experimental results (circles [44], triangles [45], squares [46]). For N = 30 theory predicts
two isomers (prolate and oblate), which are nearly degenerate. But both do have different affinities
and in the beam the signal will come from those clusters having the lower affinities (connected
by dashed lines). Clearly, shell effects are very pronounced. Qualitatively theory and experiment
agree rather well. In order to achieve quantitative agreement one has to introduce pseudopotential
perturbation theory as sketched above. Reproduced by permission of Springer Verlag

as in nuclear structure theory. As explained in detail in [29] it is on the contrary an effect
of the permanent change of level ordering and occupation as a function of N.

In addition we have calculated the electron affinities within the jellium model. But, as
well known from experience in atomic physics, the LDA functional has to be corrected for
so-called self-interaction effects (SIE) as originally proposed by Perdew and Zunger [8].
As explained in detail below, this leads to an orbital-dependent Kohn—Sham potential by
the replacement [31]:

Vic = Viba — 8- (18)

Here i is the level in question and the functional §; is the self-interaction correction for
the orbital i. We follow Perdew and Zunger [8] in wriling

8 = Ugslni} + UM mil. (19)

Here the first part is the electrostatic self-Coulomb interaction and the second part is the
analog correction for the exchange—correlation part of the effective potential. Please note
that both functionals depend on the fofal density n; and nor on the spin densities as in the
case of Perdew and Zunger who corrected the LSDA (Local Spin Density Approximation).
Results for Cu are reproduced in Figure 1.15 [31]. Though with this simple functional
quantitative agreement with experimental data is not to be expected, the experimentally
observed shell effects in the electron affinity are qualitatively well reproduced.

1.3 THE OPTICAL PROPERTIES

In the following we describe the optical properties of metal clusters within the jellium
model. We begin by introducing the TDLDA (time-dependent local density approximation)
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to general TDDFT (time-dependent density functional theory) as was done intuitively by
A. Zangwill and P. Soven in their seminal work [32]. The rigorous proof of this method
was provided later by E. K. U. Gross and collaborators in a series of papers. For a rigorous
derivation of this TDLDA (in this context sometimes called ADLDA (adiabatic local density
approximation), which points to the range of validity of the TDLDA), the interested reader
is referred to [33]. We continue with the intuitive introduction of the TDLDA.

We start by translating Fermi’s golden rule concerning the photoabsorption into the
language of density functional theory. If the jellium cluster is exposed to an external
photon field Ve, (r, 1) an induced charge density is set up, which is given as

__r / dr' X, P )V s (3 0. (20)

In this equation x is the exact dynamical density—density correlation function calculated
with the inclusion of all many-body effects. As one can show [5], the exact y is determined
by solving the TDLDA integral equation ’

xr.riw) = X’ r' o) + fdr” dr X°r, r )K" x " w). (21)
The so-called residual interaction K (r, #') is defined (in Rydberg atomic units) as
s d
Kr,r')y= — + — Vo)l —1'). (22)
lr —r| dp

The first part of the residual interaction K is the Coulomb potential established by the
induced charge density pjq(r, @) and the other part is the exchange—correlation contri-
bution to the induced effective field. Whereas Zangwill and Soven [32] introduced this
part intuitively without exact proof for the existence of this functional (for time-dependent
densities), Gross was able to show [33] the restrictions on V. (r, t) and the assumptions
to be made, to make this procedure an accurate one. To be brief, the procedure is valid
if the system is at time r in its non-degenerate ground state and if the external potential
has a Taylor expansion in time around #p. But the formulation of Gross is much more
general; the interested reader should read the original papers by Gross.

Finally, the independent particle susceptibility xo(r, r"; w) is defined (see [5]) in terms
of the one-particle Kohn—Sham eigenfunctions ¢;(r) and the retarded Green’s function
G of the Kohn—Sham Hamiltonian,

occ

¥ riw) = Z(ﬁ,-*(r Yo (r G, r'; g + hw) + c.c.(w — —w). 23)

Whereas the full density—density correlation function contains many-body effects (as
collective excitations (as poles)), xo does not contain these features. It is by construction
an independent particle function. As such it is the response function to the total perturbing
effective field,

pmatr. ) = [ &3 i 0)Vertr' o), (24)
with the effective potential defined as

Veii(r, w) = Ve (r, @) + /dr’K(r,r’)pmd(r'.‘gv) (25)
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In Eq. (25) all many-body effects are implicitely contained in the effective field. The
interesting point to note is that also in the presence of a time-dependent field all many-
body effects can be stored in a local one-particle potential, to which the electrons respond
as independent particles.

Once y is determined we are ready to calculate the photoabsorption cross-section &(aw)
(for a detailed derivation of these formulas see [5]):

4w
o(w) = —Im[a(w)], (26)
N
a(w) :/ drra(r, w), 27
0
dw 5 [, . i
a(r, w) = ——,3—"‘ / dri r“xi=1(r, riw). (28)
~ JO

Here we have used spherical symmetry, which means that y is diagonal in the angular
momentum and that for the response to the photon field it is only the component with
I = 1 we need to calculate. The last equation completes the formalism and we are ready
to present the results for a number of jellium clusters.

We start with a typical result for jellium-cluster absorption in the range 100 = N < 200,
namely N = 198, In Figure 1.16 the dashed line gives Im{a(w)]. In comparison we show
by a continuous line the absorption obtained within the Drude approximation to the
dielectric constant £(w). Here the electrons are described as a system of damped ‘oscil-
lators’ with eigenfrequency w = 0. For this reason there is no absorption feature beside

_1110' i ]

N =198
A =23.314
re =4
neutral

52 04 06 08 10 12 14 16 18 20 22 24 26 2.8 3.0

cl
w/wg

Figure 1.16 Imaginary part of the complex polarizability e(w) for an Na cluster with N = 198 in
units of k. Effective single-pair excitations, as well as the surface plasmon and the volume plasmon,
are clearly resolved. For comparison the result of the local Drude theory is also given. In this case
there is only one mode of excitation, the classical surface-plasmon polariton or Mie-resonance at
mplﬁ. Because the frequency is scaled with this frequency the Drude curve peaks trivially at 1.

For more explanation see text. Reproduced with permission from Reference [5]. Copyright 1985
by the American Physical Society
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Figure 1.17 Dipole-allowed absorption in jellium Na,, and its interpretation. The continuous line
gives the result from the TDLDA. The nature of the double structure between 0.5 and 1.0 can
be understood in two steps. First, the TDLDA is compared with LDA, the independent-particie
response (dashed line). Each peak corresponds to one arrow in the upper part of the figure. After
turning on the inreraction among excited pairs, bare pairs are transformed into dressed pairs. Note
that there is a one-to-one correspondence between the spikes in the two curves. As explained in
the text there is another effect of this interaction, namely the formation of a collective surface
mode at about 0.9. This feature has ne counterpart in the dashed curve. Furthermore there is one
more collective effect at about 1.2, For more explanation see text. Reproduced with permission
from Ekardt, Pacheco and Schone, Comments on Atomic and Molecular Physics, 31, 291 (1995).
Copyright by OPA (Overseas Publishers Association) B.V

the collective surface plasmon—polariton. Quantum-mechanically there are a number of
dipole-allowed single-particle transitions (see Figure 1.17). But, remarkably enough, these
transitions are very weak. So the quantum corrections are weak in general and consist
in the appearance of two kinds of transitions in addition to the classical Mie plasmon
at w, = wp/«/g, namely the various particle—hole transitions (the tiny spikes) and the
broad hump at w,, which is the precursor to the volume plasmon. The plasmon frequency
@, is given by mf] = 4mne®/m. For smaller particle numbers this picture changes gradu-
ally. This is demonstrated by Figure 1.17, showing the calculated absorption spectrum for
Nayg within the jellium model. In order to better identify the origin of the various spikes
(single-particle transitions) we show in the upper panel the level structure of occupied
(continuous line) and empty levels (dashed lines). The arrows mark allowed optical tran-
sitions in this potential. Clearly, there is a one-to-one correspondence between the arrows
in the upper part and the spikes in the dashed curve, describing the absorption within the
independent-particle approximation (i.e. without many-body effects). Those effects can be
clearly identified by comparing the absorption at the TDLDA levet (continuous line) with
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the dashed line. Upon taking into account many-body effects all naked particle~hole pairs
are transformed to dressed ones. In addition to these effects there are two more features,
one slightly below the classical Mie frequency and the second at about 1.2 ey,. The former
is the surface plasmon and the latter is a complicated collective feature, already known
from flat surfaces [51]. These two collective features gain oscillator strength at the cost of
low-lying single pairs which are of reduced strength in the interacting system. In addition
to these quantum effects, there is a purely classical effect, already known from the clas-
sical damped oscillator; if a damped oscillator is driven by an external field of frequency
below its resonance frequency, it oscillates in phase with the external field. But if the
external frequency is above resonance there is a phase shift by =.

This general statement applied to the problem in question means: the surface plasmon in
the interacting system screens very efficiently the external electric field for all frequencies
@ below w;. This leads to a further reduction of the oscillator strength of the single pair
lines below the surface plasmon. This means the external field is screened. In contrast, at
frequencies above w, the external field is antiscreened, which means enhanced! Indeed,
for all frequencies above the surface-plasmon frequency the intensity of the independent
particle lines (dashed line) is enhanced, a feature which is clearly seen in Figure 1.17.
The remarkable feature of the absorption in Nayg is that there is not a single surface-
plasmon line but a doublet. This behavior is called Landau fragmentation because it is
the analog (for a discrete level structure) to Landau damping (coupling of the plasmon to
a continuous single-particle spectrum). Remarkably enough, the jellium picture provides
for Nayy a reliable, though oversimplifying, description of photoabsorption. The reason
for this is discussed in the following section.

1.4 PSEUDOPOTENTIAL PERTURBATION THEORY

For a better understanding of the range of validity of the jellium model and in order to learn
how it can be successively improved we discuss in the following the specific example of
Nag. A molecular dynamics study gives three different low-lying isomers (see Figure 1.18)
with Day being the ground state within the Car—Parrinello pseudopotential plane-wave
method [34]. Because Na has only very weak non-local components in the ab initio
pseudopotentials we can use local pseudopotentials of the Heine—Abarenkov type [35].
As long as we are interested in the dynamical properties of the loosely bound valence
electrons a pseudopotential description is perfectly adequate (for a tractable method for
transition metals see below). With these restrictions, the cluster electrons are moving in
an external potential of the type

N
Vext = vas(r —R;). (29)

i=1
Here the pseudopotentials vy are located and are spherically symmetric around the ionic
sites R;. In order to better understand the performance of the jellium model each of these
potentials is decomposed into its various angular parts with respect to an arbitrary cluster

‘center’, which we assume to be the center of mass (for a discussion of other ‘centers’
see [36]),

o+l m .
Vsl —R) =D D S eu(Ris Y] (O )Y 1m0, ) (30)

=0 m=—I




PSEUDOPOTENTIAL PERTURBATION THEORY 19

Nag (Ta)

Figure 1.18 Geometries of the three lowest isomers of Nag as obtained from Car—Parrinello
calculations [34, 47]

Now we have to perform the total sum over all ionic sites in order to get the total potential.
Hence we get the total spherical part of the potential as

. |
U5 (r, R) = o Zaiz(l(Ri, r). (31)

Please note that this part depends on (the modulus) of all ionic sites R;. The remaining part
of the external potential contains geometrical information and effects finally the transition
from the molecular structure (for few ionic numbers) to the solid (for a large number
of ions). As we shall see in a number of examples the first, spherically symmetric part
of the pseudopotential is extremely well represented by the jellium model and is by far
the largest contribution to the total potential. Therefore the second part, containing the
geometrical information, can be treated by perturbation theory.

To be specific we consider in what follows the example of Nag. According to the
Car—Parrinello method [34] there are three low-lying isomers (see Figure 1.18)} with Dyg
being the ground state followed by two structures with a slightly higher total energy.
Note in passing that quantum chemists, with their methods, find Ty to be the ground-
state symmetry. As we shall see below there exists the possibility via photoabsorption to
determine the geometrical structure of a cluster. For this purpose we have to study the
influence of the geometrical part of the total potential on the absorption. This is done by
first investigating the spherical potential part of Nag in the Dyq structure which is shown in
the left-hand panel of Figure 1.19. Note that it is almost identical to the spherical jellium
model potential discussed before. In this way we have a justification for its use in the case
of the magic-number clusters N = 8, 20, 40, 58, 92, 138, efc. The two most important
nonspherical potential parts are shown in the right-hand panel of Figure 1.19. Their
influence is studied via perturbation theory. The result is as expected: very small changes
in the single-particle energies, which are now split according te..the point group of the
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Figure 1.19 Various potential components resulting from Eq. (30) for the ground state of Nag.
The left-hand panel shows the spherical component (Eq. (31)) given by the continuous line. For
comparison the spherical jellium potential (dashed line) is also given. As one can see the two
are almost identical and much larger than the two most important nonspherical potential parts
Vim meo(r) (continuous line) and vj_4 ,—o(r) (dashed line) displayed in the right-hand panel. Note
that these two components are strorigly fluctuating compared to the smooth spherical part. These
potential parts make the optical response different in the three isomeric states. In the end they are
responsible for the transition from the molecule with a point-group symmetry to the solid with a
space-group symmetry —a problem that has not yet been solved
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Figure 1.20 Optical absorption of Nag in its ground-state structure Dog. This result from pseu-
dopotential perturbation theory is explained in the main text. The spherical plasmon line at about
2.5 eV (see Figure 1.21) is split into two components which can be understood as follows. The
moments of inertia of the structure Dy point to a prolate spheroid within the jellium approxi-
mation to the distribution of ions. In such a system there are two collective excitations: one at
higher frequencies (perpendicular to the axis of symmetry) and one for the motion along the axis
of symmetry. Because the motion perpendicular is twofold degenerate its intensity is twice that of
the low-frequency motion (with the cluster being statistically oriented in the beam (see [30])
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cluster. More interesting is the effect of the geometry on the optical absorption. This effect
is investigated and described in detail in [37] (essentially the TDLDA integral equation
for x(r.r’;w) is solved perturbatively). The result for Nag in its ground-state structure
D>y is shown in Figure 1.20. The result is unexpected and can hardly be understood
within the jellium approximation to the external potential, namely the moments of inertia
for the actual cluster structure point to a prolate spheroid. The spherical one-component
surface plasmon is split into two components, with the high-frequency line about twice as
intensive as the low-frequency line. This is because the fast oscillation perpendicular to
the axis of symmetry is twofold degenerate. This result is unexpected because within the
jellium approximation to the external potential the sphere is stable against deformations
to a spheroid! The result is not only unexpected, but also annoying, because the two-
pealk structure seems to contradict the experimental findings of a broad one-peak hump
centered around 2.5 eV. Before we can make a final decision about the relevance of
our calculations, we present in the next figure absorption spectra of the other isomers.
The upper part in Figure 1.21 shows the Duq, whereas the lower part shows the Ty
structure. Each is essentially a one-peak structure with the right position at about 2.5 eV.
As we shall see later it is nevertheless the D,y structure that is in agreement with the
experiment — after taking into account the effects of temperature which we discuss next.

151
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2 225 25 2.75 3 325
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Figure 1.21 Same as Figure 1.20 for the other two structures of’ Nag. The interpretation parallels
the one for the D,y symmeltry. The absorption in Nay in the Dy structure (upper panel) points to an
oblate spheroid. Therefore the low-frequency component is twice as intensive as the high-frequency
one. Finally, the Ty structure is almost spherical; therefore the absorption consists of one peak
positioned at the spherical jellium line -
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1.5 THE EFFECT OF TEMPERATURE

Since most absorption spectra are taken at elevated temperatures T, the theoretical predic-
tion should not be made for T = 0, but for 7 > 0. At higher temperatures the ions are
oscillating around their equilibrium positions. For this reason the measured cross-section
is an ensemble average over the canonical ensemble at temperature T,

{o(w)) = _21_ > olw; Ryye PRI, (32)

where Z is the partition function

1
Z= e—ﬁE[Rxl’ — 33
Z B=17 (33)
Here the canonical phase-space sampling is performed via the Monte Carlo method (for
details see [6]). As the cluster in the beam is oriented statistically, we have to perform
three different calculations,

1
(Ou(@)) = 7 > (oi(@)). (34)

i=x,nz

2,00 2,25 2,50 215
E,eV

Figure 1.22 (a) Line shape of the photoabsorption cross-section of Nag at three different vibra-
tional temperatures in its ground-state structure Dy according to Egs (32)-(34). A numerical
damping of 0.02 eV has been assumed at 7 =0 K. This curve is without ionic fluctuations; the
other two contain jonic fluctuations at the corresponding temperatures 100 K and 300 K.

(b) Comparison with the experimental data of the Berkeley group [48]. The theoretical curve (solid
line) has been rencrmalized in order to exhaust 55% of the Thomas—Reiche—Kuhn sum rule (f-sum
rule) in accord with the experimental findings
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Now we have a picture about how demanding temperature-dependent calculations are:
we need at each T and w10* Monte Carlo points and 10? frequencies in order to cover the
experimental range. Furthermore we need the three different directions x, y and z. So we
had to solve three million times the TDLDA integral equation with full inclusion of the
ionic structure (via pseudopotential perturbation theory). Needless to say it seems almost
impossible to perform calculations of this type for transition metals with the additional
complication of the d-electrons!

The result of the Monte Carlo canonical sampling of the phase space is presented in
Figure 1.22. At zero temperature, we reproduce the pronounced doublet, which seems
to disagree with the experimental finding of a broad one-peak structure. With elevated
temperature the two peaks merge into one and almost agree with the experimental data at
300 K, resolving a long-standing puzzle. The observed width of the surface-plasmon line
is not related to dissipative processes or to Landau damping (coupling to particle—hole
pairs), nor is it due to electron—phonon coupling. It is instead a line-broadening, due to
the oscillations of the ions around their equilibrium positions.

We conclude with two more examples which demonstrate the power of pseudopotential
perturbation theory. Figure 1.23 shows the geometry and absorption spectra of Nag which

Nag
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Figure 1.23 Geometry (upper panel) and optical absorption (lower panel) of Nag in its ground
state Cs, [34]. The spherical jellium line (dashed curve) disintegrates into various particle—hole lines
(continuous curve) under the influence of the strongly fluctuating potential components shown in the
next figure. The continuous curve agrees gualitatively with results obtained-by quantum chemists [49]
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Figure 1.24 The most important nonspherical potential components of Nag in the geometry GCsv.
Because these components are heavily Huctuating and nor small, there is no collective peak at the
TDLDA level

is an open-shell cluster (pentagonal pyramid). The dashed line is the result of the spherical
jellium calculation; it shows one collective peak. Under the influence of the strong and
strongly fluctuating nonspherical parts of the potential (shown in Figure 1.24) the effi-
cient Coulomb coupling of (excited) particle—hole pairs is destroyed and the plasmon
disintegrates into its constituent components. In the last example we show in Figure 1.25
the absorption spectra of Nagg. Because for such large clusters ab initio studies of the
equilibrium structure do not exist we just built small crystal fractions of fce, bee, hep and
icosahedral symmetry and calculated the total energy within second-order pseudopotential
perturbation theory (the first-order contribution is identical to zero for symmetry reasons).
In the case of Nagg it is the hep structure that is energetically favorable. Accurate experi-
mental data on Nagg do not exist. First preliminary data confirm a peak on the high-energy
side [38].

1.6 SUMMARY AND CONCLUSIONS

The alert reader will have realized that almost all examples given in this chapter are from
Na. Of course this was on purpose: two of the most important conditions to be fulfilled
for the excellent validity of the jellium model, namely (a) that the pseudopotential is local
and (b) that the ‘geometrical’ parts of the ionic arrangement are weak, are best met in
Nay. In trying other elements we found only one other material that works comparably
well — potassium. But the important point to note is that this simple model serves as a
guideline for more complex cases. After electronic shells and plasmons have been found in
Na, they have been found in almost all metal clusters. In order to get the same quantitative
agreement as in the case of Na one has either to do all-electron calculations or to use
non-local pseudopotentials, as has been done in the case of Li [39, 40]. But in these



SUMMARY AND CONCLUSIONS 25

25 2.75 3 3.25 35
energy [eV]

Figure 1.25 Geometry and optical absorption of Nagy. For N = 90 there are no determinations of
the geometry at the ab initio level available. We have therefore simply calculated the total energy
within pseudopotential perturbation theory of second order for various model clusters built as small
crystal fractions of fee, bee, hep and icosahedral type. For the case in question the hep structure
(see upper part of the figure) has the lowest total energy

calculations the geometrical part of the (non-local) pseudopotentials has not been studied.
Only the spherical component has been modified and this results in just another position
of the plasmon line and not in a qualitative change of the spectra. This is not sufficient
to catch the full variety of metal-cluster absorption. For instance, the disintegration of
plasmons in Nag is a new and qualitative aspect that can be obtained only in a model
beyond the spherical average of the potential. This has never been done for ab initio
pseudopotentials.

Another important point of complications is the existence of d-electrons. Though the
noble metals, like the alkaline metals, show magic numbers [30], indicating that the -
d-electrons do not sufficiently strongly disturb the mutual correlation of the s-electrons
(which is the root of the occurrence of shells), they do couple dynamically to the
s-electrons, as is already known from the bulk crystals of the noble metals [13, 18].
For these cases we need a new and much more complicated theory. This is ab initio
TDLDA [41, 42] which is currently being constructed. Here, we.calculate the electronic
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structure ab initio at the all-electron level, within the FPLAPW method (full potential
linearized augmented plane wave method; computer code WIEN95 [43]). In this way,
the dynamical coupling between s- and d-electrons is taken into account from the very
beginning. In the case of clusters an additional complication occurs, namely hybridization
(e.g. in Ag, the 4d- and 5s-electrons hybridize). This feature is hardly caught by any
jellium-type model.

From a general point of view the example of the temperature-dependent absorption in
Nag is of the utmost importance. Because the method TDLDA, which was introduced
intuitively in the seminal work by Zangwill and Soven [32], has itself been doubted for
several years. But as we know from the work of Gross’s group this method is on a
firm theoretical basis and should deliver exact results whenever the residual interaction is
not frequency-dependent and is of the plasmon type. In the case of excitons it will fail,
because here the screening in the Coulomb part of the residual interaction is essential.
Therefore it is not surprising that all applications of the TDLDA to atoms, molecules and
clusters and to solids are in a frequency region where no excitons are to be expected, i.c.
the spectral region above the particle—hole part of the excitations but not that below it.
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