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Abstract. A first-principles program designed to compute, among other
quantum-mechanical observables, the total energy of a given molecule,
is efficiently parallelized using MPI as the underlying communication
layer. The resulting program fully distributes CPU and memory among
the available processes, making it possible to perform large-scale Monte-
Carlo Simulated Annealing computations of very large molecules, ex-
ceeding the limits usually attainable by similar programs.

1 Introduction

At present, an enormous effort is being dedicated to the study and fabrication of
nano-structures and new materials, which calls for a framework to compute, from
first-principles, and predict, whenever possible, properties associated with these
types of systems. Among such frameworks, Density Functional Theory (DFT)
constitutes one of the most promising. Indeed, the success of DFT to compute
the ground-state of molecular and solid-state systems has been recognized in
1998 with the award of the Nobel Prize of Chemistry to Walter Kohn and John
Pople. DFT provides a computational framework with which the properties of
molecules and solids can, in certain cases, be predicted within chemical accu-
racy (= 1 Kcal/mol). Therefore, it is natural to try to use at profit the most
recent computational paradigms in order to break new frontiers in these areas
of research and development.

In this work we report the successful parallelization of an ab-initio DFT pro-
gram, which makes use of a Gaussian basis-set. This, as will become clear in the
following section, is just one of the possible ways one may write down a DFT-
code. It has, however, the advantage of allowing the computation of neutral and
charged molecules at an equal footing, of making it possible to write the code
in a modularized fashion (leading to an almost ideal load-balance), as well as it



is taylor-made to further exploit the recent developments of the so-called order-
N techniques. As a result, the program enables us to carry out the structural
optimization of large molecules via a Monte-Carlo Simulated Annealing strategy.
Typically, the implementation of a molecular DFT-code using Gaussian, lo-
calized, basis-states, scales as N3,, or N2, depending on implementation, where
N, is the number of atoms of the molecule. Such a scaling constitutes one of the
major bottlenecks for the application of these programs to large (> 50 atoms)
molecules, without resorting to dedicated supercomputers. The fact that the
present implementation is written in a modular fashion makes it simple and ef-
ficient to distribute the load among the available pool of processes. All tasks
so-distributed are performed locally in each process, and All data required to
perform such tasks is also made available locally. Furthermore, the distribution of
memory among the available processes is also done evenly, in a non-overlapping
manner. In this way we optimize the performance of the code both for efficiency
in CPU time as well as in memory requirements, which allows us to extend the
range of applicability of this technique.
This paper is organized as follows: In Section II a brief summary of the un-
derlying theoretical methods and models, as applied to molecules, is presented,
in order to set the framework and illustrate the problems to overcome. In Sec-
tion III the numerical implementation and strategy of parallelization is discussed,
whereas in Section IV the results of applying the present program to the struc-
tural optimization of large molecules using Simulated Annealing are presented
and compared to other available results. Finally, the main conclusions and future
prospects are left to Section V.

2 Molecular Simulations with DFT

In the usual Born-Oppenheimer Approximation (BOA) the configuration of a
molecule is defined by the positions R; of all the N,; atoms of the molecule and
by their respective atomic number (nuclear charge). The energy of the electronic
ground state of the molecule is a function Egs(Ry,...,Rn,,) of those nuclear
positions. One of the objectives of quantum chemistry is to be able to calcu-
late relevant parts of that function, as the determination of the full function is
exceedingly difficult for all except the simplest molecules. In practice one may
try to find the equilibrium configuration of the molecule, given by the minimum
of Egg, or one may try to do a statistical sampling of the surface at a given
temperature 7. That statistical sampling can be done by Molecular Dynamics
(MD) or by Monte-Carlo (MC) methods. By combining the statistical sam-
pling at a given T with a simulation process in which one begins at a high T
and, after equilibrating the molecule, starts reducing the 7" in small steps, always
equilibrating the molecule before changing T, one realizes an efficient algorithm
for the global minimization of Egg, the so-called Simulated Annealing Method
(SAM).

The calculation of Egs for a single configuration is a difficult task, as it
requires the solution of an interacting many-electron quantum problem. In Kohn-



Sham DFT this is accomplished by minimizing a functional of the independent
electron orbitals ¥;(7),

Egs(Ry,...,RnN,,) = nllbivnEKS(Rl’ oy RN Y1, . YN, (1)

i

where N,; is the number of electrons of the molecule, and the minimization is
done under the constraint that the orbitals remain orthonormal,

/ i) (r)dr = ;. 2)

The Euler-Lagrange equation associated with the minimization of the Kohn-
Sham functional is similar to a one particle Schrodinger equation

2
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except for the non-linear dependence of the effective potential veg on the or-

bitals. As our objective here is to discuss the numerical implementation of our

algorithms, we will not discuss the explicit form of veg and the many approxi-

mations devised for its practical calculation, and just assume one can calculate

vest given the electron wavefunctions 1;(r). The reader can find the details on

how to calculate veg in excellent reviews, e. g., refs.[1,2] and references therein.
If one expands the orbitals in a finite basis-set,

Yi(r) = Z%‘%‘(") (4)

then our problem is reduced to the minimization of a function of the coefficients,

Egs(Rl, .. .,RNM) ~ minEKS(Rl, .. .,RNM;CH, N 7CNezM) (5)

Cij

and the Euler-Lagrange equation becomes a matrix equation of the form

Zcij [ij - EiSkj] =0 (6)

where the eigenvalues are obtained, as usual, by solving the secular equation
d6t|Hij — ES”| =0. (7)

The choice of the basis-set is not unique[3]. One of the most popular basis-sets
uses Gaussian basis-functions

$i(r) = Niexp(—ai(r — R:)*)Z,(5" (r — R;) (8)

where the angular funtions Z;™ are chosen to be real solid harmonics, and N; are
normalization factors. These functions are centered in a nucleus R; and are an



example of localized basis-sets. This is an important aspect of the method, since
this implies that the matrix-elements H;; result, each of them, from the contribu-
tion of a large summation of three-dimensional integrals involving basis-functions
centered at different points in space. This multicenter topology involved in the
computation of H;; ultimately determines the scaling of the program as a func-
tion of Ng:. Finally, one should note that, for the computation of H;; one needs
to know veg which in turn requires knowledge of 1;(r). As usual the solution is
obtained via a self-consistent iterative scheme, as illustrated in fig.1 .

Due to the computational costs of calculating Fgg from first principles, for
a long time the statistical sampling of Fgg has been restricted to empirical or
simplified representations of that function. In a seminal paper, Car and Par-
rinello[4] (CP) proposed a method that was so efficient that one could for the
first time perform first-principles molecular dynamics simulations. Their key idea
was to use molecular dynamics, not only to sample the atomic positions but also
to minimize in practice the Kohn-Sham functional. Furthermore they used an
efficient manipulation of the wave-functions in a plane-wave basis-set to speed
up their calculations. Although nothing in the C' P method is specific to a given
type of basis-set, the truth is that the overwhelming number of C'P simulations
use a plane-wave basis-set, to the point that most people would automatically
assume that a C'P simulation would use a plane wave basis-set.

Although one can use plane-waves to calculate molecular properties with a
super-cell method, most quantum chemists prefer the use of gaussian basis-sets.
What we present here is an efficient parallel implementation of a method where
the statistical sampling of the atomic positions is done with M C and the Kohn-
Sham functional is directly minimized in a gaussian basis-set.

3 Numerical implementation

3.1 Construction of the matrix

Each matrix-element H;; has many terms, which are usually classified by the
number of different centers involved in its computation. The time and memory
consuming terms are those associated with three center integrals used for the
calculation of the effective potential veg. For the sake of simplicity we will assume
that the effective potential is described also as a linear combination of functions
9k (T‘),
L
vesr (r, {i}) = Y fu({eis}) gr(7), (9)

k=1

where the coeficients fi have a dependence on the wavefunction coefficients,
and g are atom centered gaussian functions. Actually, in the program only the
exchange and correlation term of the effective potential is expanded this way,
but the strategy of parallelization for all other contributions is exactly the same,
and so we will not describe in detail the other terms.
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Fig. 1. self-consistent iterative scheme for solving the Kohn-Sham equations. One starts
from an educated guess for the initial density which, in DFT, can be written in terms
of the eigenfunctions of the Kohn-Sham equations as p(r) = >, |i(r)|?. After several
iterations one arrives at a density which does not change any more upon iteration.



The contribution of the effective potential to the hamiltonian H;; is

L

Vi = [ oilrventr, ()00 = 3 Ao [ oiaurisir

fe({eij}) Air; (10)

k=1

where the integral A;x; = [ ¢i(r)gr(r)¢;(r)d®r involves three gaussian func-
tions, and can be calculated analytically. Furthermore all dependence on wave-
function coefficients is now in the coefficients fj of the potential, and the integrals
A;r; are all the same in the self-consistent iterations. This means that all the
iterative procedure illustrated in fig. 1 amounts now to recombine repeatedly the
same integrals, but with different coefficients at different iterations throughout
the self-consistent procedure.

We can now appreciate the two computational bottlenecks of a gaussian
program. As the indexes 4,7 and k can reach to several hundred the size of the
three-index array A;;; requires a huge amount of memory. Although analytical,
the calculation of each of the A;j; is non-trivial and requires a reasonable number
of floating point operations. The summation in eq. 10 has to be repeated for each
of the self-consistent iterations.

So far, no parallelization has been attempted. We now use at profit the
modular structure of the program in order to distribute tasks among the available
processes in an even and non-overlapping way. In keeping with this discussion,
we recast each matrix-element V;; in the form

Vij= > Vil (11)

where the indexed V;; [A] will be evenly distributed among the N, processes
executing the program, that is, it will be null except in one of the processes.
Similarly, the three-index array A;z; is distributed as

Nproc

Z A (12)

in such a way that A;x;[A] is null if V;;[A] is null. Of course, the null elements
are not stored so the large array is distributed among all the processes, which
for a distributed memory machine means that A;j; is distributed among all the
processes. As

A =" ful{ei}) AN (13)
k=1

there is no need to exchange the values of A;;; among processes, but only those
of fi before summation, and V;;[\] after the summation. So the calculation of



A;x; is distributed among the processes, the storage is also distributed, and A;x;
never appears in the communications.

Finally, and due to the iterative nature of the self-consistent method, the
code decides - a priori - which process will be responsible for the computation
of a given contribution to V;;[A]. This allocation is kept unchanged throughout
an entire self-consistent procedure.

3.2 Eigenvalue problem

For N,; atoms and, assuming that we take a basis-set of M gaussian functions
per atom, our eigenvalue problem, egs. 6 and 7, will involve a matrix of dimension
(Ngt x M). Typical numbers for an atomic cluster made out of 20 sodium atoms
would be Ny = 20 and M = 7. This is a pretty small dimension for a matrix to
be diagonalized, so the CPU effort is not associated with the eigenvalue problem
but, mostly, with the construction of the matrix-elements H;;. We have not
yet parallelized this part of the code. Its paralellization, poses no conceptual
difficulty, since this problem is taylor made to be dealt with by existing parallel
packages, such as SCALAPACK. As this part of the code is the most CPU time
consuming among the non-paralelized parts of the code, it is our next target for
parallelization.

3.3 Monte-Carlo iterations

Once Egs(Ry,...,Rpy,,) is obtained for a given molecular configuration, the
Monte-Carlo Simulated Annealing algorithm “decides” upon the next move. As
stated before, this procedure will be repeated many thousands of times before an
annealed struture is obtained, hopefully corresponding to the global minimum
of Egs.

When moving from one MC iteration to the next, the Simulated Annealing
algorithms typically change the coordinates of one single atom R, — R, + dR.
As the basis set is localized, each of the indices in A;;;, is associated with a given
atom. If none of the indices is associated with the atom R,, than A;;; does not
change, and therefore is not recalculated. In this way, only a fraction of the order
of 1/Ny; of the total number of integrals A;;x needs to be recalculated, leading
to a substantial saving in computer time, in particular for the larger systems !
Furthermore, the “educated guess” illustrated in fig. 1, used to start the self-
consistent cycle is taken, for MC iteration n + 1, as the self-consistent density
obtained from iteration n. In this way, in all but the start-up M C iteration, the
number of iterations required to attain self-consistency becomes small. It is this
coupling between the Monte-Carlo and DFT parts of the code that allow us to
have a highly efficient code which enables us to run simulations in which the
self-consistent energy of a large cluster needs to be computed many thounsands
of times (see below).



4 Results and discussion

The program has been written in FORTRAN 77 and we use MPI as the underly-
ing communication layer, although a PVM translation would pose no conceptual
problems. Details of the DFT part of the program in its non-parallel version have
been described previously ref[6]. The MC method and the SAM algorithm are
well-described in many excellent textbooks[7].

The Hardware architecture in which all results presented here have been ob-
tained is assembled as a farm of 22 DEC 500/500 workstations. The nodes are
connected via a fast-ethernet switch, in such a way that all nodes reside in the
same virtual (and private) fast-ethernet network. In what concerns Software, the
22 workstations are running Digital Unix version 4.0-d, the DEC Fortran com-
piler together with DXMUL-libraries, and the communication layer is provided by
the free MPICH]8] distribution, version 1.1. Nevertheless, we would like to point
out that the same program has been tested successfully on a PC, a dual-Pentium
I1-300, running Linux-SMP, g77-Fortran and LAM-MPI[9] version 6.2b.

We started to test the code by choosing a non-trivial molecule for which

results exist, obtained with other programs and using algorithms different from
the SAM. Therefore, we considered an atomic cluster made out of eight sodium
atoms - Nag. Previous DFT calculations indicate that a Dyg structure - left
panel of fig. 3 - corresponds to the global minimum of Egs[6].
Making use of our program, we have reproduced this result without difficulties.
Indeed, we performed several SAM runs starting from different choices for the
initial structure, and the minimum value obtained for Eggs corresponded, indeed,
to the D54 structure. One should note that one SAM run for Nag involves the
determination of Egg up to 2,2 10* times. Typically, we have used 1000 MC-
iterations at a given fixed-temperature 7' in a single SAM run. This number,
which is reasonable for the smaller clusters, becomes too small for the larger,
whenever one wants to carefully sample the phase-space associated with the
{Ry,...,Ry,,} coordinates.

As shown in the right panel of fig. 2, N. ag+ was our second choice. This is a nine
atom sodium cluster to which one electron has been removed. As is well known/[5]
this cluster, together with Nag, constitute so-called magic clusters, in the sense
that they display an abnormally large stability as compared to their neighbours
in size[10]. When compared with quantum-chemistry results, the DFT structures
are different, both for Nag and Nag . This is not surprising, since the underlying
theoretical methods and the minimization strategies utilized are also different, at
the same time that the hyper-surface corresponding to Egs({R;}) is very shallow
in the neighbourhood of the minima, irrespective of the method. Nevertheless,
recent experimental evidence seem to support the DFT results[10].

In order to test the performance of the parallelization, we chose N ag and
carried out two different kinds of benchmarks. First we executed the program
performing 1 iteration - the start-up iteration - for Nag and measured the CPU
time Topy as a function of the number of processes Nproc. For the basis-set
used, the number of computed A;i; elements is, in this case 328779. As can be
seen from eq. 13, the ratio of computation to communications is proportional to



Fig. 2. global minimum of Egg for the two magic sodium clusters Nag and N a;,".
For the determination of such global minima a SAM algorithm has been employed,
requiring many thousands of first-principles computations of Egg to be carried out.

the number of fit functions L. By choosing a small molecule where L is small
we are showing an unfavorable case, where the parallelization gains are small,
so we can discuss the limits of our method. In fig. 3 we plot, with a solid line,
the inverse of the CPU time as a function of Nproc.

Our second benchmark calculation involves the computation of 100 MC-
iterations. For direct comparison within the same scale, we multiplied the inverse
of Topy by the number of iterations. The resulting curve is drawn with a dashed
line in fig. 3.

Several features can be inferred from a direct comparison of the 2 curves. First
of all, there is an ideal number Nproc into which the run should be distributed.
Indeed, fig. 3 shows that efficiency may actually drop as Nproc is increased. For
this particular system, Nproc = 8 is the ideal number. This “node-saturation”
which takes place here for NV a; is related to the fact that the time per iteration is
small enough for one to be able to observe the overhead in communications due
to the large number of nodes in which the run is distributed. When the number
of atoms increases, this overhead becomes comparatively smaller and ceases to
produce such a visible impact on the overall benchmarks. From fig. 3 one can
also observe that, for small Nproc , the largest gain of efficiency is obtained for
the 1-iteration curve. This is so because that is where the parallelization plays a
big role. Indeed, as stated in section 3, the number of floating point operations
which are actually performed in the subsequent M C-iterations is considerably
reduced, compared to those carried out during the start-up iteration. As a result,
the relative gain of efficiency as Nproc increases becomes smaller in this case.
However, since both CPU and memory are distributed, it may prove convenient
to distribute a given run, even if the gain is not overwhelming.
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Fig. 3. Dependence of inverse CPU time (multiplied by the number of M C-iterations)
as a function of the number of processes (in our case, also dedicated processors) for two
benchmark calculations (see main text for details). A direct comparison of the curves
illustrates what has been parallelized in the code and where the parallelization plays
its major role.



The solid curve of fig. 3 is well fitted by the function 0,25 — 0,17/Nproc up to
Nproc = 8 which reveals that a good level of parallelization has been obtained.
This is particularly true if we consider that the sequential code has 14200 lines,
and is very complex, combining many different numerical algorithms.

Finally, we would like to remark that, at present, memory requirements seem
to put the strongest restrictions on the use of the code. This is so because of
the peculiar behaviour of MPICH which creates, for each process, a “clone-
listener” of each original process, that requires the same amount of memory as
the original processes. This is unfortunate since it imposes, for big molecules, to
set up a very large amount of swap space on the disk in order to enable MPI to
operate successfully. In our opinion, this is a clear limitation. We are, at present,
working on alternative ways to overcome such problems.

In fig. 4 we show our most recent results in the search for global minima of
sodium clusters. The structures displayed in fig. 4 have now 21 (left panel) and
41 (right panel) sodium atoms. A total of 4147605 matrix-elements is required
to compute each iteration of the self-consistent procedure for Naj; whereas for
N aj{l the corresponding number is 30787515. The structures shown in fig. 4
illustrate the possibilities of the code, which are, at present limited by swap
limitations exclusively. Of course, the CPU time for these simulations is much
bigger than for the smaller clusters discussed previously. In this sense, the struc-
ture shown for Naj; cannot be considered unambiguosly converged, in the sense
that more SAM runs need to be executed. On the other hand, we believe the
structure depicted for Naj; to be fully converged. Since no direct experimen-
tal data for these structures exists, only indirect evidence can support or rule
out such structural optimizations. The available experimental data[10] indirectly
supports this structure since, from the experimental location of the main peaks of
the photo-absorption spectrum of such a cluster one may infer the principal-axes
ratio of the cluster, in agreement with the prediction of fig. 4.

5 Conclusions and future applications

In summary, we have suceeded in parallelizing a DFT code which efficiently
computes the total energy of a large molecule. We have managed to parallelize the
most time and memory consuming parts of the program, except, as mentioned
in section 3.2, the diagonalization block, which remains to be done. This is
good enough for a small farm of workstations, but not for a massive parallel
computer. We should point out that it is almost trivial to parallelize the Monte-
Carlo algorithm. In fact as a SAM is repeated starting from different initial
configurations, one just has to run several jobs simultaneously, each in its group
of processors. However, this will not have the advantages of distributing the
large matrix A;;;. As storage is critical for larger molecules, parallelizing the
DFT part of the code may be advantageous even when the gains in CPU time
do not look promising.

The code is best suited for use in combination with M C-type of simulations,
since we have shown that, under such circumstances, not only the results of a



Fig. 4. Global minima for two large singly ionized sodium clusters with 21 atoms (left
panel) and 41 atoms (right panel). Whereas the structure of Naj; can be considered
as ”converged”, the same cannot be unambiguously stated for the structure shown for
Naj,. For this largest cluster, the structure displayed shows our best result so-far,
although further SAM runs need to be carried out.

given iteration provide an excellent starting point for the following iteration,
but also the amount of computation necessary to compute the total energy at
a given iteration has been worked out, to a large extent, in the previuous it-
eration. Preliminary results illustrate the feasibility of running first-principles,
large-scale SAM simulations of big molecules, without resorting to dedicated
supercomputers. Work along these lines is under way.
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