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Abstra
t. A �rst-prin
iples program designed to 
ompute, among otherquantum-me
hani
al observables, the total energy of a given mole
ule,is eÆ
iently parallelized using MPI as the underlying 
ommuni
ationlayer. The resulting program fully distributes CPU and memory amongthe available pro
esses, making it possible to perform large-s
ale Monte-Carlo Simulated Annealing 
omputations of very large mole
ules, ex-
eeding the limits usually attainable by similar programs.
1 Introdu
tionAt present, an enormous e�ort is being dedi
ated to the study and fabri
ation ofnano-stru
tures and new materials, whi
h 
alls for a framework to 
ompute, from�rst-prin
iples, and predi
t, whenever possible, properties asso
iated with thesetypes of systems. Among su
h frameworks, Density Fun
tional Theory (DFT)
onstitutes one of the most promising. Indeed, the su

ess of DFT to 
omputethe ground-state of mole
ular and solid-state systems has been re
ognized in1998 with the award of the Nobel Prize of Chemistry to Walter Kohn and JohnPople. DFT provides a 
omputational framework with whi
h the properties ofmole
ules and solids 
an, in 
ertain 
ases, be predi
ted within 
hemi
al a

u-ra
y (= 1 K
al/mol). Therefore, it is natural to try to use at pro�t the mostre
ent 
omputational paradigms in order to break new frontiers in these areasof resear
h and development.In this work we report the su

essful parallelization of an ab-initio DFT pro-gram, whi
h makes use of a Gaussian basis-set. This, as will be
ome 
lear in thefollowing se
tion, is just one of the possible ways one may write down a DFT-
ode. It has, however, the advantage of allowing the 
omputation of neutral and
harged mole
ules at an equal footing, of making it possible to write the 
odein a modularized fashion (leading to an almost ideal load-balan
e), as well as it



is taylor-made to further exploit the re
ent developments of the so-
alled order-N te
hniques. As a result, the program enables us to 
arry out the stru
turaloptimization of large mole
ules via a Monte-Carlo Simulated Annealing strategy.Typi
ally, the implementation of a mole
ular DFT-
ode using Gaussian, lo-
alized, basis-states, s
ales as N3at, or N4at, depending on implementation, whereNat is the number of atoms of the mole
ule. Su
h a s
aling 
onstitutes one of themajor bottlene
ks for the appli
ation of these programs to large (> 50 atoms)mole
ules, without resorting to dedi
ated super
omputers. The fa
t that thepresent implementation is written in a modular fashion makes it simple and ef-�
ient to distribute the load among the available pool of pro
esses. All tasksso-distributed are performed lo
ally in ea
h pro
ess, and All data required toperform su
h tasks is also made available lo
ally. Furthermore, the distribution ofmemory among the available pro
esses is also done evenly, in a non-overlappingmanner. In this way we optimize the performan
e of the 
ode both for eÆ
ien
yin CPU time as well as in memory requirements, whi
h allows us to extend therange of appli
ability of this te
hnique.This paper is organized as follows: In Se
tion II a brief summary of the un-derlying theoreti
al methods and models, as applied to mole
ules, is presented,in order to set the framework and illustrate the problems to over
ome. In Se
-tion III the numeri
al implementation and strategy of parallelization is dis
ussed,whereas in Se
tion IV the results of applying the present program to the stru
-tural optimization of large mole
ules using Simulated Annealing are presentedand 
ompared to other available results. Finally, the main 
on
lusions and futureprospe
ts are left to Se
tion V.
2 Mole
ular Simulations with DFTIn the usual Born-Oppenheimer Approximation (BOA) the 
on�guration of amole
ule is de�ned by the positions Ri of all the Nat atoms of the mole
ule andby their respe
tive atomi
 number (nu
lear 
harge). The energy of the ele
troni
ground state of the mole
ule is a fun
tion EGS(R1; : : : ;RNat) of those nu
learpositions. One of the obje
tives of quantum 
hemistry is to be able to 
al
u-late relevant parts of that fun
tion, as the determination of the full fun
tion isex
eedingly diÆ
ult for all ex
ept the simplest mole
ules. In pra
ti
e one maytry to �nd the equilibrium 
on�guration of the mole
ule, given by the minimumof EGS , or one may try to do a statisti
al sampling of the surfa
e at a giventemperature T . That statisti
al sampling 
an be done by Mole
ular Dynami
s(MD) or by Monte-Carlo (MC) methods. By 
ombining the statisti
al sam-pling at a given T with a simulation pro
ess in whi
h one begins at a high Tand, after equilibrating the mole
ule, starts redu
ing the T in small steps, alwaysequilibrating the mole
ule before 
hanging T , one realizes an eÆ
ient algorithmfor the global minimization of EGS , the so-
alled Simulated Annealing Method(SAM).The 
al
ulation of EGS for a single 
on�guration is a diÆ
ult task, as itrequires the solution of an intera
ting many-ele
tron quantum problem. In Kohn-



Sham DFT this is a

omplished by minimizing a fun
tional of the independentele
tron orbitals  i(r),EGS(R1; : : : ;RNat) = min i EKS(R1; : : : ;RNat ; 1; : : : ;  Nel) (1)where Nel is the number of ele
trons of the mole
ule, and the minimization isdone under the 
onstraint that the orbitals remain orthonormal,Z  i(r) j(r)d3r = Æij : (2)The Euler-Lagrange equation asso
iated with the minimization of the Kohn-Sham fun
tional is similar to a one parti
le S
hrodinger equation� �h22mr2 i(r) + ve�(r; 1; : : : ;  n) i(r) = �i i(r); (3)ex
ept for the non-linear dependen
e of the e�e
tive potential ve� on the or-bitals. As our obje
tive here is to dis
uss the numeri
al implementation of ouralgorithms, we will not dis
uss the expli
it form of ve� and the many approxi-mations devised for its pra
ti
al 
al
ulation, and just assume one 
an 
al
ulateve� given the ele
tron wavefun
tions  i(r). The reader 
an �nd the details onhow to 
al
ulate ve� in ex
ellent reviews, e. g., refs.[1, 2℄ and referen
es therein.If one expands the orbitals in a �nite basis-set,
 i(r) = MXj 
ij�j(r) (4)

then our problem is redu
ed to the minimization of a fun
tion of the 
oeÆ
ients,EGS(R1; : : : ;RNat) � min
ij EKS(R1; : : : ;RNat ; 
11; : : : ; 
NelM ) (5)and the Euler-Lagrange equation be
omes a matrix equation of the formXj 
ij [Hkj � �iSkj ℄ = 0 (6)
where the eigenvalues are obtained, as usual, by solving the se
ular equationdetjHij � ESij j = 0: (7)The 
hoi
e of the basis-set is not unique[3℄. One of the most popular basis-setsuses Gaussian basis-fun
tions�i(r) = Ni exp(��i(r �Ri)2)Zm(i)l(i) (r �Ri) (8)where the angular funtions Zml are 
hosen to be real solid harmoni
s, and Ni arenormalization fa
tors. These fun
tions are 
entered in a nu
leus Ri and are an



example of lo
alized basis-sets. This is an important aspe
t of the method, sin
ethis implies that the matrix-elementsHij result, ea
h of them, from the 
ontribu-tion of a large summation of three-dimensional integrals involving basis-fun
tions
entered at di�erent points in spa
e. This multi
enter topology involved in the
omputation of Hij ultimately determines the s
aling of the program as a fun
-tion of Nat. Finally, one should note that, for the 
omputation of Hij one needsto know ve� whi
h in turn requires knowledge of  i(r). As usual the solution isobtained via a self-
onsistent iterative s
heme, as illustrated in �g.1 .Due to the 
omputational 
osts of 
al
ulating EGS from �rst prin
iples, fora long time the statisti
al sampling of EGS has been restri
ted to empiri
al orsimpli�ed representations of that fun
tion. In a seminal paper, Car and Par-rinello[4℄ (CP ) proposed a method that was so eÆ
ient that one 
ould for the�rst time perform �rst-prin
iples mole
ular dynami
s simulations. Their key ideawas to use mole
ular dynami
s, not only to sample the atomi
 positions but alsoto minimize in pra
ti
e the Kohn-Sham fun
tional. Furthermore they used aneÆ
ient manipulation of the wave-fun
tions in a plane-wave basis-set to speedup their 
al
ulations. Although nothing in the CP method is spe
i�
 to a giventype of basis-set, the truth is that the overwhelming number of CP simulationsuse a plane-wave basis-set, to the point that most people would automati
allyassume that a CP simulation would use a plane wave basis-set.Although one 
an use plane-waves to 
al
ulate mole
ular properties with asuper-
ell method, most quantum 
hemists prefer the use of gaussian basis-sets.What we present here is an eÆ
ient parallel implementation of a method wherethe statisti
al sampling of the atomi
 positions is done with MC and the Kohn-Sham fun
tional is dire
tly minimized in a gaussian basis-set.
3 Numeri
al implementation3.1 Constru
tion of the matrixEa
h matrix-element Hij has many terms, whi
h are usually 
lassi�ed by thenumber of di�erent 
enters involved in its 
omputation. The time and memory
onsuming terms are those asso
iated with three 
enter integrals used for the
al
ulation of the e�e
tive potential ve� . For the sake of simpli
ity we will assumethat the e�e
tive potential is des
ribed also as a linear 
ombination of fun
tionsgk(r), ve�(r; f ig) = LXk=1 fk(f
ijg) gk(r); (9)where the 
oe�
ients fk have a dependen
e on the wavefun
tion 
oeÆ
ients,and gk are atom 
entered gaussian fun
tions. A
tually, in the program only theex
hange and 
orrelation term of the e�e
tive potential is expanded this way,but the strategy of parallelization for all other 
ontributions is exa
tly the same,and so we will not des
ribe in detail the other terms.



Fig. 1. self-
onsistent iterative s
heme for solving the Kohn-Sham equations. One startsfrom an edu
ated guess for the initial density whi
h, in DFT, 
an be written in termsof the eigenfun
tions of the Kohn-Sham equations as �(r) =Pi j i(r)j2. After severaliterations one arrives at a density whi
h does not 
hange any more upon iteration.



The 
ontribution of the e�e
tive potential to the hamiltonian Hij is
Vij = Z �i(r)ve�(r; f ig)�j(r)d3r = LXk=1 fk(f
ijg) Z �i(r)gk(r)�j(r)d3r

= LXk=1 fk(f
ijg)Aikj (10)
where the integral Aikj = R �i(r)gk(r)�j(r)d3r involves three gaussian fun
-tions, and 
an be 
al
ulated analyti
ally. Furthermore all dependen
e on wave-fun
tion 
oeÆ
ients is now in the 
oeÆ
ients fk of the potential, and the integralsAikj are all the same in the self-
onsistent iterations. This means that all theiterative pro
edure illustrated in �g. 1 amounts now to re
ombine repeatedly thesame integrals, but with di�erent 
oeÆ
ients at di�erent iterations throughoutthe self-
onsistent pro
edure.We 
an now appre
iate the two 
omputational bottlene
ks of a gaussianprogram. As the indexes i; j and k 
an rea
h to several hundred the size of thethree-index array Aikj requires a huge amount of memory. Although analyti
al,the 
al
ulation of ea
h of the Aikj is non-trivial and requires a reasonable numberof 
oating point operations. The summation in eq. 10 has to be repeated for ea
hof the self-
onsistent iterations.So far, no parallelization has been attempted. We now use at pro�t themodular stru
ture of the program in order to distribute tasks among the availablepro
esses in an even and non-overlapping way. In keeping with this dis
ussion,we re
ast ea
h matrix-element Vij in the form

Vij = Npro
X�=1 Vij [�℄ (11)
where the indexed Vij [�℄ will be evenly distributed among the Npro
 pro
essesexe
uting the program, that is, it will be null ex
ept in one of the pro
esses.Similarly, the three-index array Aikj is distributed as

Aikj = Npro
X�=1 Aikj [�℄ (12)
in su
h a way that Aikj [�℄ is null if Vij [�℄ is null. Of 
ourse, the null elementsare not stored so the large array is distributed among all the pro
esses, whi
hfor a distributed memory ma
hine means that Aikj is distributed among all thepro
esses. As Vij [�℄ = LXk=1 fk(f
ijg)Aikj[�℄ (13)there is no need to ex
hange the values of Aikj among pro
esses, but only thoseof fk before summation, and Vij [�℄ after the summation. So the 
al
ulation of



Aikj is distributed among the pro
esses, the storage is also distributed, and Aikjnever appears in the 
ommuni
ations.Finally, and due to the iterative nature of the self-
onsistent method, the
ode de
ides - a priori - whi
h pro
ess will be responsible for the 
omputationof a given 
ontribution to Vij [�℄. This allo
ation is kept un
hanged throughoutan entire self-
onsistent pro
edure.
3.2 Eigenvalue problemFor Nat atoms and, assuming that we take a basis-set of M gaussian fun
tionsper atom, our eigenvalue problem, eqs. 6 and 7, will involve a matrix of dimension(Nat�M). Typi
al numbers for an atomi
 
luster made out of 20 sodium atomswould be Nat = 20 and M = 7. This is a pretty small dimension for a matrix tobe diagonalized, so the CPU e�ort is not asso
iated with the eigenvalue problembut, mostly, with the 
onstru
tion of the matrix-elements Hij . We have notyet parallelized this part of the 
ode. Its paralellization, poses no 
on
eptualdiÆ
ulty, sin
e this problem is taylor made to be dealt with by existing parallelpa
kages, su
h as SCALAPACK. As this part of the 
ode is the most CPU time
onsuming among the non-paralelized parts of the 
ode, it is our next target forparallelization.
3.3 Monte-Carlo iterationsOn
e EGS(R1; : : : ;RNat) is obtained for a given mole
ular 
on�guration, theMonte-Carlo Simulated Annealing algorithm \de
ides" upon the next move. Asstated before, this pro
edure will be repeated many thousands of times before anannealed struture is obtained, hopefully 
orresponding to the global minimumof EGS .When moving from one MC iteration to the next, the Simulated Annealingalgorithms typi
ally 
hange the 
oordinates of one single atom R� ! R�+ ÆR.As the basis set is lo
alized, ea
h of the indi
es in Aijk is asso
iated with a givenatom. If none of the indi
es is asso
iated with the atom R�, than Aijk does not
hange, and therefore is not re
al
ulated. In this way, only a fra
tion of the orderof 1=Nat of the total number of integrals Aijk needs to be re
al
ulated, leadingto a substantial saving in 
omputer time, in parti
ular for the larger systems !Furthermore, the \edu
ated guess" illustrated in �g. 1, used to start the self-
onsistent 
y
le is taken, for MC iteration n + 1, as the self-
onsistent densityobtained from iteration n. In this way, in all but the start-up MC iteration, thenumber of iterations required to attain self-
onsisten
y be
omes small. It is this
oupling between the Monte-Carlo and DFT parts of the 
ode that allow us tohave a highly eÆ
ient 
ode whi
h enables us to run simulations in whi
h theself-
onsistent energy of a large 
luster needs to be 
omputed many thounsandsof times (see below).



4 Results and dis
ussionThe program has been written in FORTRAN 77 and we use MPI as the underly-ing 
ommuni
ation layer, although a PVM translation would pose no 
on
eptualproblems. Details of the DFT part of the program in its non-parallel version havebeen des
ribed previously ref[6℄. The MC method and the SAM algorithm arewell-des
ribed in many ex
ellent textbooks[7℄.The Hardware ar
hite
ture in whi
h all results presented here have been ob-tained is assembled as a farm of 22 DEC 500/500 workstations. The nodes are
onne
ted via a fast-ethernet swit
h, in su
h a way that all nodes reside in thesame virtual (and private) fast-ethernet network. In what 
on
erns Software, the22 workstations are running Digital Unix version 4.0-d, the DEC Fortran 
om-piler together with DXML-libraries, and the 
ommuni
ation layer is provided bythe free MPICH[8℄ distribution, version 1.1. Nevertheless, we would like to pointout that the same program has been tested su

essfully on a PC, a dual-PentiumII-300, running Linux-SMP, g77-Fortran and LAM-MPI[9℄ version 6.2b.We started to test the 
ode by 
hoosing a non-trivial mole
ule for whi
hresults exist, obtained with other programs and using algorithms di�erent fromthe SAM . Therefore, we 
onsidered an atomi
 
luster made out of eight sodiumatoms - Na8. Previous DFT 
al
ulations indi
ate that a D2d stru
ture - leftpanel of �g. 3 - 
orresponds to the global minimum of EGS [6℄.Making use of our program, we have reprodu
ed this result without diÆ
ulties.Indeed, we performed several SAM runs starting from di�erent 
hoi
es for theinitial stru
ture, and the minimum value obtained for EGS 
orresponded, indeed,to the D2d stru
ture. One should note that one SAM run for Na8 involves thedetermination of EGS up to 2; 2 104 times. Typi
ally, we have used 1000 MC-iterations at a given �xed-temperature T in a single SAM run. This number,whi
h is reasonable for the smaller 
lusters, be
omes too small for the larger,whenever one wants to 
arefully sample the phase-spa
e asso
iated with thefR1; : : : ;RNatg 
oordinates.As shown in the right panel of �g. 2,Na+9 was our se
ond 
hoi
e. This is a nineatom sodium 
luster to whi
h one ele
tron has been removed. As is well known[5℄this 
luster, together with Na8, 
onstitute so-
alled magi
 
lusters, in the sensethat they display an abnormally large stability as 
ompared to their neighboursin size[10℄. When 
ompared with quantum-
hemistry results, the DFT stru
turesare di�erent, both for Na8 and Na+9 . This is not surprising, sin
e the underlyingtheoreti
al methods and the minimization strategies utilized are also di�erent, atthe same time that the hyper-surfa
e 
orresponding to EGS(fRig) is very shallowin the neighbourhood of the minima, irrespe
tive of the method. Nevertheless,re
ent experimental eviden
e seem to support the DFT results[10℄.In order to test the performan
e of the parallelization, we 
hose Na+9 and
arried out two di�erent kinds of ben
hmarks. First we exe
uted the programperforming 1 iteration - the start-up iteration - for Na+9 and measured the CPUtime TCPU as a fun
tion of the number of pro
esses NPROC. For the basis-setused, the number of 
omputed Aikj elements is, in this 
ase 328779. As 
an beseen from eq. 13, the ratio of 
omputation to 
ommuni
ations is proportional to



Fig. 2. global minimum of EGS for the two magi
 sodium 
lusters Na8 and Na+9 .For the determination of su
h global minima a SAM algorithm has been employed,requiring many thousands of �rst-prin
iples 
omputations of EGS to be 
arried out.
the number of �t fun
tions L. By 
hoosing a small mole
ule where L is smallwe are showing an unfavorable 
ase, where the parallelization gains are small,so we 
an dis
uss the limits of our method. In �g. 3 we plot, with a solid line,the inverse of the CPU time as a fun
tion of NPROC.Our se
ond ben
hmark 
al
ulation involves the 
omputation of 100 MC-iterations. For dire
t 
omparison within the same s
ale, we multiplied the inverseof TCPU by the number of iterations. The resulting 
urve is drawn with a dashedline in �g. 3.Several features 
an be inferred from a dire
t 
omparison of the 2 
urves. Firstof all, there is an ideal number NPROC into whi
h the run should be distributed.Indeed, �g. 3 shows that eÆ
ien
y may a
tually drop as NPROC is in
reased. Forthis parti
ular system, NPROC = 8 is the ideal number. This \node-saturation"whi
h takes pla
e here for Na+9 is related to the fa
t that the time per iteration issmall enough for one to be able to observe the overhead in 
ommuni
ations dueto the large number of nodes in whi
h the run is distributed. When the numberof atoms in
reases, this overhead be
omes 
omparatively smaller and 
eases toprodu
e su
h a visible impa
t on the overall ben
hmarks. From �g. 3 one 
analso observe that, for small NPROC , the largest gain of eÆ
ien
y is obtained forthe 1-iteration 
urve. This is so be
ause that is where the parallelization plays abig role. Indeed, as stated in se
tion 3, the number of 
oating point operationswhi
h are a
tually performed in the subsequent MC-iterations is 
onsiderablyredu
ed, 
ompared to those 
arried out during the start-up iteration. As a result,the relative gain of eÆ
ien
y as NPROC in
reases be
omes smaller in this 
ase.However, sin
e both CPU and memory are distributed, it may prove 
onvenientto distribute a given run, even if the gain is not overwhelming.



Fig. 3. Dependen
e of inverse CPU time (multiplied by the number of MC-iterations)as a fun
tion of the number of pro
esses (in our 
ase, also dedi
ated pro
essors) for twoben
hmark 
al
ulations (see main text for details). A dire
t 
omparison of the 
urvesillustrates what has been parallelized in the 
ode and where the parallelization playsits major role.



The solid 
urve of �g. 3 is well �tted by the fun
tion 0; 25 � 0; 17=Npro
 up toNpro
 = 8 whi
h reveals that a good level of parallelization has been obtained.This is parti
ularly true if we 
onsider that the sequential 
ode has 14200 lines,and is very 
omplex, 
ombining many di�erent numeri
al algorithms.Finally, we would like to remark that, at present, memory requirements seemto put the strongest restri
tions on the use of the 
ode. This is so be
ause ofthe pe
uliar behaviour of MPICH whi
h 
reates, for ea
h pro
ess, a \
lone-listener" of ea
h original pro
ess, that requires the same amount of memory asthe original pro
esses. This is unfortunate sin
e it imposes, for big mole
ules, toset up a very large amount of swap spa
e on the disk in order to enable MPI tooperate su

essfully. In our opinion, this is a 
lear limitation. We are, at present,working on alternative ways to over
ome su
h problems.In �g. 4 we show our most re
ent results in the sear
h for global minima ofsodium 
lusters. The stru
tures displayed in �g. 4 have now 21 (left panel) and41 (right panel) sodium atoms. A total of 4147605 matrix-elements is requiredto 
ompute ea
h iteration of the self-
onsistent pro
edure for Na+21 whereas forNa+41 the 
orresponding number is 30787515. The stru
tures shown in �g. 4illustrate the possibilities of the 
ode, whi
h are, at present limited by swaplimitations ex
lusively. Of 
ourse, the CPU time for these simulations is mu
hbigger than for the smaller 
lusters dis
ussed previously. In this sense, the stru
-ture shown for Na+41 
annot be 
onsidered unambiguosly 
onverged, in the sensethat more SAM runs need to be exe
uted. On the other hand, we believe thestru
ture depi
ted for Na+21 to be fully 
onverged. Sin
e no dire
t experimen-tal data for these stru
tures exists, only indire
t eviden
e 
an support or ruleout su
h stru
tural optimizations. The available experimental data[10℄ indire
tlysupports this stru
ture sin
e, from the experimental lo
ation of the main peaks ofthe photo-absorption spe
trum of su
h a 
luster one may infer the prin
ipal-axesratio of the 
luster, in agreement with the predi
tion of �g. 4.
5 Con
lusions and future appli
ationsIn summary, we have su
eeded in parallelizing a DFT 
ode whi
h eÆ
iently
omputes the total energy of a large mole
ule.We have managed to parallelize themost time and memory 
onsuming parts of the program, ex
ept, as mentionedin se
tion 3.2, the diagonalization blo
k, whi
h remains to be done. This isgood enough for a small farm of workstations, but not for a massive parallel
omputer. We should point out that it is almost trivial to parallelize the Monte-Carlo algorithm. In fa
t as a SAM is repeated starting from di�erent initial
on�gurations, one just has to run several jobs simultaneously, ea
h in its groupof pro
essors. However, this will not have the advantages of distributing thelarge matrix Aijk. As storage is 
riti
al for larger mole
ules, parallelizing theDFT part of the 
ode may be advantageous even when the gains in CPU timedo not look promising.The 
ode is best suited for use in 
ombination with MC-type of simulations,sin
e we have shown that, under su
h 
ir
umstan
es, not only the results of a



Fig. 4. Global minima for two large singly ionized sodium 
lusters with 21 atoms (leftpanel) and 41 atoms (right panel). Whereas the stru
ture of Na+21 
an be 
onsideredas "
onverged", the same 
annot be unambiguously stated for the stru
ture shown forNa+41. For this largest 
luster, the stru
ture displayed shows our best result so-far,although further SAM runs need to be 
arried out.
given iteration provide an ex
ellent starting point for the following iteration,but also the amount of 
omputation ne
essary to 
ompute the total energy ata given iteration has been worked out, to a large extent, in the previuous it-eration. Preliminary results illustrate the feasibility of running �rst-prin
iples,large-s
ale SAM simulations of big mole
ules, without resorting to dedi
atedsuper
omputers. Work along these lines is under way.A
knowledgementsJMP and JLM a
knowledge �nan
ial support from the Ministry of S
ien
eand Te
hnology under 
ontra
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