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Abstract. We present a method to perform efficiently Monte Carlo simulations for
molecules with total energies calculated from first principles density functional theory
using a gaussian basis set. It relies on the strong coupling between the Monte Carlo al-
gorithm and the structure of the first principles code, which has been parallelized. The
feasibility of the method is illustrated by carrying out extensive computer simulations
for a cluster with 21 atoms. Possible generalizations and extensions of the method are
briefly discussed.

INTRODUCTION

Two families of methods have dominated the field of statistical mechanics simula-
tion of materials since the appearence of electronic computers: molecular dynamics
and Monte Carlo. [1] In fact they are among the earliest simulations run on com-
puters. The earlier simulations used classical interatomic forces and energies, that
is, one had a parametrization or prescription for how the energy of the system
U(Ry,...,R,) depended on the positions R; of the n atoms in the system. For the
case of a pair potential one assumes that U takes the form,

— —

U(R,,...,R,) =ZV(|Ri—ﬁj|) (1)

and an example of a pair potential V' is the Lennard-Jones interaction, V(R) =
€((o/R)*?—(0/R)%). Ideally one should calculate U from first principles of quantum
mechanics. Developments in electronic structure theory of solids and molecules
showed that such an ideal would be feasible but with early computers and methods,
the calculations could only be carried out for small molecules at great computational
cost, and therefore could not be coupled with statistical mechanics methods that
required the fast calculation of U for a large number of atoms. That situation was
changed when in a seminal paper Car and Parrinello [2] showed that one could do



first principles molecular dynamics in an efficient way for systems with a few tens of
atoms. (Currently we can deal with hundreds of atoms in a supercomputer or tens
of atoms in a PC.) In the Car—Parrinello method energies and forces are calculated
within the framework of density functional theory [3,4] with a plane-wave basis
set (and a pseudopotential approximation) [5] and molecular dynamics simulated
annealing was used to minimize the energy functional of the density. There are
several technical details of the method that make it highly efficient, but make it
non-trivial to extend to other basis sets or to Monte Carlo methods.

Here we present a method to perform efficiently Monte Carlo simulations for
molecules using total energies calculated from first principles density functional
theory using a gaussian basis set. In Chapter II we will review the characteristics
of the Monte Carlo and molecular dynamics methods, as well as the key features
of the first-principles molecular dynamics with a plane-wave basis set. In Chapter
ITT we will present our implementation of the gaussian basis set Monte Carlo and
illustrate the method with an example.

BACKGROUND

Molecular Dynamics

In a classical molecular dynamics (MD) simulation we are given the positions
R;(t) and velocities 7;(t) = dR;(t)/dt of the i-th atom at time ¢, and a prescription
to calculate the potential energy of the system U (Ry(t), ..., Ry(t)). The forces on

the atoms, Fy(Ry(t),..., Ba(t)) = =V iU(Rl( ) - ﬁn(t)) are obtained from the
gradient of the energy Wlth respect to the atomlc positions. One then integrates
Newton’s equations of motion:

1 —

Ri(t + 6t) = ,()+5tvl()+%5t2ﬁz Fi(R.(t),..., Ra(t)) + (2)
Bt +6t) = § ()+5tMil (Fa(D)s . Ra) + ... (3)

Several algorithms are used in practice, corresponding to different combinations
and truncations of the Taylor expansions of position and velocity. [1] Repeating
the process allows one to produce a trajectory for the atoms.

In principle the process should conserve the total energy of the system, £ =
U(RL(t), ..., Ro(t)) + ;(1/2M,)(t)? and the best algorithms are those that have
a good energy conservation. One can couple the system with a thermostat, allowing
for energy to flow between the system being simulated and the thermostat, so that
the simulations may be performed at constant temperature instead of constant
energy. If one lowers slowly the temperature of the thermostat we will lower also
the energy of the system, a minimization procedure called simulated annealing.



Monte Carlo

In a typical Monte Carlo (MC) simulation, [1] given the positions ﬁfm) of the
i-th atom at step m one calculates the corresponding potential energy V(™ =
U (ﬁ&m), N ﬁ,g?")). One then generates a trial configuration with atomic positions
ﬁfry, calculates its corresponding potential energy V' and decides either to ac-
cept or reject that configuration according to a well defined algorithm. Accep-
tance means taking ﬁ§m+” = }?{Ery , while rejection implies generating new trial
configurations until one is accepted. The popular Metropolis algorithm for ac-
cepting/rejecting configurations is the following: If V'™ < V(™ the configura-
tion is accepted; If V™ > V(™ the configuration is accepted with probability
0 < p=exp(—(V"™ — V™) /kpT) < 1 where T is the simulation temperature,

and kg the Boltzmann constant. A chain of configurations }?ﬁm) is generated by
repeating the procedure. Again if we decrease slowly the simulation temperature,
we will be minimizing the energy of the system by simulated annealing.

The efficiency of a Monte Carlo simulation depends on the choice of the trial
configurations. If they are close to the original configuration the acceptance rate
will be high but one will move slowly in configuration space. If they are very
different, we find out that V' — V(™ >> EpT most of the times (remember,
we are supposed to be near a minimum of energy) and most trial moves will be
rejected. A popular choice of Monte Carlo trial step is to move one atom at a time,
RB™ = RB™ fori # k, and B = RU™ 4+ 6 R, where 6 R is a randomly chosen vector
with an average length chosen to optimize the acceptance/rejection rate. At each
Monte Carlo step one tries to move a different atom.

Comparative efficiency of classical MD and MC

We can now compare the computational cost of the Monte Carlo and Molecular
Dynamics methods. To give a chance to all atomic coordinates to move in an
uncorrelated way, we must try 3n Monte Carlo moves. In Molecular Dynamics we
update all the coordinates in a single step, in the “right” direction dictated by the
interplay of the forces and inertia. However for each step of Molecular Dynamics
we must calculate 3n force components. For a classical pair potential, each force
component has about the same computational cost of calculating just the energy.
We can roughly say that a Molecular dynamics step costs & 3n times more than
a Monte Carlo step, but we need &~ 3n times less steps to sample a representative
part of the phase space. That is the computational efficiency of both methods is
comparable, and choosing one or another depends on many factors. For example,
it may be easier to extract dynamical quantities from Molecular Dynamics and
equilibrium properties from Monte Carlo.



First Principles Molecular Dynamics

In a first principles Density Functional simulation the ground state electronic
energy of the system is calculated by finding an electronic density pumi,(7) which
minimizes a density functional,

iz, mylel = / p(Fv(F) d*r + Flp] + Boyaia (4)

where v(7) = 3, — lf—_Zﬁle is the coulomb potential of nuclei with charge Z; located at

positions R}, p(7) is the total electron density, F'[p] is a universal energy functional

(in particular it is independent of R}) and the Ewald energy is Epyalq = X< II'TZ‘%I'

i— R
The minimization is done under the constraint of fixed number N of electrons, that
is [p(7) d®r = N.

The forces on nuclei are given by

L P R, B i
Fi==ViEy 5ilom. = /pmin(f’)m PBr + Z;; ijim (5)
7 YE2) 7
where we used the fact that
6p Pmin *

This result is the Hellman-Feynman theorem applied to Density Functional The-
ory. Within such a scheme, the minimization of the the density functional, that
is the calculation of pui,(7), is extremely expensive when compared with the cal-
culation of F,. If one compares the efficiency of a Monte Carlo algorithm with a
molecular dynamics algorithm for this case of “almost cost free” computation of
the forces compared with the calculation of the energy, one reaches the conclusion
that Molecular Dynamics is much more efficient than Monte Carlo, by a factor
that is proportional to the number of atoms of the system. This is the case for a
plane-wave basis-set. However, whenever the minimization of the energy functional
in Eq. 4 is done under some constraints — for example a finite atomic basis set
— extra terms, called Pulay forces, may appear in the expression for the force,
rendering its calculation more expensive. [6]

The balance between the energy minimization and force calculation can be seen
easily in the original Car-Parrinello framework, where the charge density is given
by a sum of the squares of one particle wavefunctions, p(7) = 3, [ (7)|?, and the
wavefunctions are expanded in a sum of plane-waves, ¢ (7) = Y, ckl% exp(iél - 7).
The minimization of the energy functional is now a minimization with respect to
the coeficients ¢, (with appropriate constraints of orthonormality of the ;). As
the scale of the electronic energies is the atomic unit, of the order of 3 x 10° K, if
one does a molecular dynamics simulation with the ¢;; as fictitious variables at a



temperature of a few hundred Kelvin, one will always be very close to the minimum
of the electronic energy, that is we are effectively minimizing the energy functional
by simulated annealing. The number of coefficients ¢, is quadratic in the number
of atoms, Ny, and is of the order of 100NZ. So in a molecular dynamics simulation
the calculation of the 3n derivative components OFE/OR), is cheap compared with
the calculation of ~ 100 x N2 values of OE/dcy,.

There are two aspects of the Car-Parrinello algorithm that should be noticed.
The first is that they use a method using Fast Fourier Transforms (FFT) to calculate
OF /Ocy; in an efficient way. This method is specific to the plane-wave basis set.
The FFT method can be used with minimization strategies of E, 5 \[p] other
than simulated annealing. [7] The second is that in any minimization a good initial
guess is always extremely helpful. With only small modifications of f{j from one
step to the next, the pui,(7) of one step is a good guess for the next step. The first
aspect is sufficiently important to ensure that the large majority of first principles
molecular dynamics simulations are done with a plane-wave basis set.

Solving Kohn-Sham equations with a finite basis set

In Kohn-Sham DFT the universal density functional is written as

—y

Flp] =Ts[p]+%//%d3rd3r’+&c[p], (7)

where Ti[p] is the ground state kinetic energy of a non-interacting electron system
which has a ground state charge density p(7). The exchange and correlation energy
functional Ey.[p] is defined by that equation. If we write the charge density as a
sum of the squares of one particle wavefunctions, p(7) = 3 [¢(7)|?> and minimize
the energy functional with respect to the wavefunctions under the constraint that
they remain orthonormal,

@@ d'r = 5, ®)

we obtain an Euler-Lagrange equation that is similar to a one particle Schrodinger
equation

—f—mvwfa + ver (7 []) 1 (7) = et (7). 9)

However, the effective potential veg has a non-linear dependence on the electron
density,

—~

F)p(r_v) d37”/—|— 6Exc

Vit (7) = et (7) + / ﬁffm 5o = el F () + () (10)



where the three terms are the external, Hartree and exchange and correlation po-
tentials. This equation is solved iteratively: we assume an input electron density p™
and calculate the input effective potential v!%; this potential is used to solve for the
now linearized Eq. (9) and obtain the output orbitals. These are used to construct
a new input electron density and the process is iterated until self-consistency is
achieved. The reader can find the details on how to calculate v.g on other chapters
of this volume.
If one expands the orbitals in a finite basis-set,

M
i) = ) 165 (7) (11)
J
then the Euler-Lagrange equation becomes a matrix equation of the form
> cij[Hij — €iSkj] = 0 (12)
J
where
T - - 3
Hyj = [ 317 (=5 VA7) + ver (75 ) 65 (7) d°r (13)
and
Sii = [ (7057 d'r (14)

Gaussian Orbitals
One of the most popular basis-sets uses Gaussian basis-functions
¢i(1) = Njexp(—a;(r" — és(i))Q)Zﬁgi)(F— Ry@) (15)

where the angular funtions Z/" are chosen to be real solid harmonics (real polyno-
mials of order ), N; are normalization factors, and «; is an exponent that controls
the size of the function. These functions are centered at ﬁs(i), where s(i) is the
mapping between the index of the basis function and the atomic site where it is
centered. The reason for the popularity of gaussian basis sets is that they are suf-
ficiently flexible to describe atomic orbitals with a few functions, and the integrals
with gaussian functions can often be written in an explicit analytical form.

We can also use gaussian basis functions to represent the components of the
effective potential. [8-10] These sets are not the same as those for the orbitals, but
here for the sake of simplicity of notation we will assume they are the same. They
are used to represent the input charge density



P = aigi(7) (16)
and the input exchange and correlation potential
Vye (T) = ;@@(F) : (17)
The contribution of the effective potential to the hamiltonian H;; is
Vi = [6:Fyan(rp Tmmwj(f) &'r (18)
_Z/@F )61+ 3 o ¢2F)¢’“F Oil7) oy gy
- R |7 — R;| 7|
+Zbk/¢ir" k(7)o (F) dr
k
= ; Vo + Z Al pay, + Z B, by

In the course of the self-consistent iterations, the coefficients a; and by change
their value, but V%', A}, and B, remain the same. They can be evaluated only
once at the beginning of the calculation. As a result calculating the contribution
of the effective potential to the hamiltonian requires only array multiplications.
Moreover, the diagonalization of H;; is also a question of linear algebra. As the
indexes 7,7 and k can reach to several hundred, the size of the three-index arrays
Xigj (X = Vet  AH B*¢) requires a huge amount of memory. Although analytical,
the calculation of each of the X;;; is non-trivial and requires a reasonable number
of floating point operations. Compared with the calculation of these tables, and
the access to the tables to construct the hamiltonian H;;, the diagonalization of
H;; is fast, requiring only a few percent of the total computing time. This is just
the opposite of the situation for a typical plane-wave code where setting up the
hamiltonian takes a few percent of the time and diagonalization takes most of the
computing time. Furthermore the calculation of forces with gaussian basis sets
requires the implementation of Pulay corrections [6] for basis sets incompleteness,
which is not a trivial task.

As aresult, in a finite basis set, the Monte Carlo methods can become competitive
with Molecular Dynamics methods. On the following we present our implementa-
tion of such a Monte Carlo scheme.

FIRST PRINCIPLES MONTE CARLO

Implementation

To obtain an efficient First Principles Monte Carlo algorithm it is not enough
to pass the energies calculated with a first principles method to an existing Monte
Carlo program. Indeed it is crucial to find a synergy between the two methods.



Once Egg(Ry,...,Ry,,) is obtained for a given molecular configuration, the
Monte Carlo Simulated Annealing algorithm “decides” upon the next move. This
procedure will be repeated many thousands of times before an annealed struture is
obtained, hopefully corresponding to the global minimum of Egg. When moving
from one Monte Carlo iteration to the next, the Simulated Annealing algorithms
typically change the coordinates of one single atom, R; — R; + 0R. As the basis
set functions are centered on the atomic sites (see Eq. 15), only those functions
that are centered on atom 4, that is, those that satisfy s(j) = 4, change with the
Monte Carlo move. The coefficient Xj;; will not change with the Monte Carlo
step if s(j) # ¢ and s(k) # i and s(I) # 4, and does not need to be recalculated.
In this way, only a fraction of the order of 1/Ny of the total number of integrals
Xi;r needs to be recalculated, leading to a substantial saving in computer time.
A crucial point is that as the system size increases a smaller fraction of integrals
have to be recalculated. In Fig. 1 we show schematically the three dimensional
arrangement of a three index array X;;;. Each index is associated with an atom
in the molecule. The shaded region indicates the elements of the array where at
least one of the indices is associated with a given atom, and therefore only those
elements have to be recalculated when that atom moves.

When one starts a self-consistent calculation, an “educated guess” for the starting
potential or charge density is required. In our case we use for Monte Carlo iteration
n+1 the self-consistent density obtained from iteration n. In this way, in all but the
start-up Monte Carlo iteration, a small number of iterations is required to attain
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FIGURE 1. The arrangement of elements of a three index array X;j;, is shown schematically.
The shaded area shows the array elements that have at least one index that is associated with
one given atom.



self-consistency, resulting in further savings in computer time. It is this coupling
between the Monte Carlo and DF'T parts of the code that allow us to have a highly
efficient code which enables us to run simulations in which the self-consistent energy
of a large cluster needs to be computed many thounsands of times.

Parallelism

Since each of the Xj; is independent from the others, we can use the modular
structure of the program in order to parallelize the code and distribute both the
tasks and the storage among the available processors. We recast each matrix-
element V;; in the form

NprOC
Vii= > VilA (19)

A=1
where the indexed V;;[A] will be evenly distributed among the Ny, processes exe-
cuting the program, so that processor A contains only the non-zero elements of V;;[A]
and no other elements of V;;. Similarly, the three-index array Xj;; is distributed as

Nproc

Xigj = Y Xigg[A] (20)

in such a way that X,;[A] is null if V;;[A] is null. Of course, the null elements are
not stored so the large array is distributed among all the processes, which makes
the code optimal for parallel architectures based on distributed memory. As

L

Vil Al = 3= ar({cij}) Aig [\l + (21)
k=1

there is no need to exchange the values of X;;; among processes, but only those of

ay before summation, and V;;[A] after the summation. As a result, the calculation

of Xji; is split among the processes, the storage is also distributed, and Xj;; never

appears in the communications. A detailed analysis of the parallelization issues

will be published elsewhere. [11]

Example

We have applied the method described above to the optimization of Na clusters.
Fig. 2 shows the total energy of the cluster as a function of MC step for a Nag;
cluster (see inset). This is a “magic number” cluster, for which the optical response
has been measured. At first the MC temperature is high to randomize the cluster.
Then the temperature is reduced as can be seen from the decreasing fluctuations
of the cluster energy. A J-walk algorithm [12,13] has been used to increase the
frequency of barrier jumping processes. The more than 60000 total energies were
efficiently calculated in a departmental workstation farm.
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FIGURE 2. Evolution of the total energy of NaJ, as a function of MC step during a simulated
annealing run

CONCLUSIONS

We have successfully implemented a first principles Monte Carlo scheme for the
calculation of the equilibrium structures of molecules and clusters. Combining the
fact that a typical Monte Carlo step moves only one atom at a time with the use of
atom centered functions to represent both wave-functions and potentials, we were
able to reuse most of the molecular integrals calculated in a previous iteration,
with important savings in computer time. Moreover, the modular structure of the
calculation of the molecular integrals allowed an easy parallelization of that part
of the computation.

We use a gaussian basis set, but the method can be used with any atom-centered
basis set, in as much as the potentials are also expanded in atomic centered func-
tions. The current bottleneck is the large amount of molecular integrals that are
calculated and stored. As the size of the cluster increases it is possible to decide a
priori if a whole class of integrals needs to be calculated. We have implemented this
strategy for gaussians and found modest gains for the example discussed. However
for larger clusters the savings from such a procedure will be more important. No-
tice that if we had a finite range atomic basis set the number of integrals would
ultimately scale linearly in the number of atoms.
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