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First-principles norm-conserving pseudopotential with explicit incorporation of semicore states
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We develop a pseudopotential generation scheme which provides, in a systematic way, first-principles,
transferable, norm-conserving pseudopotentials which include, in addition to standard valence electrons, semi-
core electrons. The scheme improves the quality of the pseudopotential for some transition metal polyatomic
systems where the semicore states can play an active role in the chemical bonding of those systems. The
method is employed to generate pseudopotentials for Ti and Cu, taken as limiting examples of 3d transition
metals, which are then used to study the structural properties of both homonuclear dimers and the bulk solid of
these elements. The results obtained put in evidence the excellent agreement obtained in all cases between the
pseudopotential results and benchmark all-electron calculations for the same systems.
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I. INTRODUCTION

Electronic-structure calculations performed within t
framework of density functional theory~DFT! in its different
approximation flavors, have demonstrated their capacity
only to describe accurately but also to predict, differe
physical and chemical properties of complex molecular
uid and solid state systems, ranging from phase transiti
defects in semiconductors, structural and electronic pro
ties of atomic clusters, the structure of and diffusion on s
faces, as well as the electromagnetic excitations in molec
and solids. In many of these applications use has been m
of pseudopotentials.

Replacing the effect that chemically inert core states e
on the chemically active valence states by means of an
fective pseudopotential dates back to the early work
Fermi1 and Phillips and Kleinman,2 and has seen a sizeab
amount of interest and further improvements since the de
opment of norm-conserving pseudopotentials.3–5 The physi-
cal reasoning behind the pseudopotential approximatio
simple: Since the core electron wave functions of an at
remain essentially unchanged when placed into differ
chemical environments and since to a large extent the c
tribution of the core wave functions to chemical bonding
to enforce the orthogonality between the valence wave fu
tions and the core states, the true atomic potential can ind
be replaced by a pseudopotential that reproduces the ef
of the core electrons. As a result, transferableab initio
pseudopotentials6–9 have been successfully developed a
used in band structure and total-energy calculations for c
plex polyatomic systems.10 For calculations with a plane
wave~PW! basis set, a pseudopotential that gives a fast c
vergence of the calculated properties with increasing b
set size is commonly called a ‘‘soft’’ pseudopotential.11 Due
to the popularity of PW calculations a great deal of effort h
been made in identifying the characteristics of softness
pseudopotential, and in developing new generation meth
0163-1829/2003/68~15!/155111~6!/$20.00 68 1551
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that produce softer pseudopotentials. An example of suc
type of soft pseudopotential is the Troullier and Marti
~TM! pseudopotential8 which allows the numerical simula
tion of complex systems to be carried out with significa
savings of memory and computing time, and which we g
eralize in the present work in order to incorporate semic
states~see below!.

One can easily generate a TM for any element of
periodic table. For most elements and applications t
pseudopotential is very accurate in the sense that the e
associated with replacing the cores by a pseudopotenti
significantly smaller than the error introduced by replaci
the exact exchange and correlation by an approximate fu
tional such as the local density approximation~LDA !. In
other words, the difference between similar pseudopoten
and all-electron~AE! calculations is smaller than the differ
ence between AE and experiment. There are, however, a
cases where the pseudopotential approximation is not s
factory and an even smaller number of cases where it fa
Those cases correspond to atoms where the basic assum
of the pseudopotential approximation—that the core and
lence electron wave functions are well separated in b
space and momentum—is not well verified, that is, when
core states have a large extension or are not strongly bo
Such states are called semicore states. Situations for w
the predictions of usual pseudopotentials such as the TM
are the bond lengths of titanium, vanadium, or chromiu
dimers and small clusters.12 These 3d transition metal dimers
have a surprisingly short bond length. For instance, the
tance between atoms in Ti2 is only 65% of the nearest neigh
bor distance in the bulk metal, and the type of bonding
truly exotic~d bonds!. Another~albeit related! situation is the
lack of accuracy in the quasiparticle calculations of ele
tronic energies and lifetimes of transition metals.13 Indeed,
these are situations in which the role of semicore electron
that is, those electrons in the completely filled shells bel
the valence shell—cannot be ignored, and indeed sev
©2003 The American Physical Society11-1
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methods have been proposed which allow the inclusion
semicore electrons as active in the pseudopotential.14,15

The problem with the 3d transition metals is that thei
valence configuration is 4sn4p03dm, and due to the lack ofd
electrons in the core the 3d wave functions are compact an
overlap significantly with the 3s and 3p semicore states
This effect is larger in the early elements of the series wh
those semicore states are less bound and more extende
obvious solution would be to include those 3s and 3p semi-
core states as part of the valence in the pseudopotential
eration scheme. That would require only a somewhat la
energy cutoff in the plane-wave expansion with respect to
3d electrons and a larger number of electrons in the valen
corresponding to a manageable increase in the neces
computing resources. For a large class of pseudopoten
however, such a generalization is not possible for a techn
reason, namely, if a screened pseudopotential is generate
inverting the Schro¨dinger equation for a pseudo-wav
function then the procedure is valid only for nodeless pse
wave functions, and one can only have a single pseu
wave-function of a given orbital with quantum numberl, in
order to warrant its nodeless structure. As the 4p orbitals are
unoccupied one can easily include the 3p electrons in those
class of schemes by considering a 3p64sn3dm valence con-
figuration. However, in this way one treats the 3s and 3p
electrons on a different footing, a feature which is not eas
justify. One can also generate pseudopotentials from an
ized configuration 3s23p63dm ~implying 4s0), but pseudo-
potentials generated from ionized configurations tend to
less accurate. Finally one can generate pseudopotentials
several different reference energies,9 in this way by-passing
the Schro¨dinger equation inversion step, but that requires
rewriting of the computer codes for the bulk that rely on t
traditional pseudopotential form.

In this work we overcome this limitation of traditiona
pseudopotentials in general and of the TM scheme in part
lar by developing a pseudopotential generation sche
which allows the inclusion of semicore states, while keep
the traditional semilocal form of the pseudopotential, wh
means they can be used without further changes in bulk c
putational codes. The strategy constitutes a generalizatio
the ideas underlying the TM method which have been rep
edly shown to provide a highly efficient pseudopotential g
eration scheme. Application of this scheme—which will
denoted in the following as the multireference pseudopo
tial ~MRPP!—to selected, representative elements shows
the present method is not only capable of producing hi
quality results for diatomics and bulk matter—when ben
marked against AE results—but also that one can now
semicore electrons efficiently in a PW framework.

This paper is organized as follows. After a brief review
general pseudopotential theory in Sec. II, Sec. III will revie
the TM method, which will be generalized to the MRP
recipe in Sec. IV, in order to incorporate semicore electro
We test the method in Sec. V for several 3d transition met-
als. We choose the rather unfavorable~in a PW sense! case of
dimers as well as the more suitable bulk phases of th
elements and compare the results obtained with the
pseudopotentials with those originating from AE calculatio
15511
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as well as with those associated with the standard
pseudopotentials. In Sec. VI we summarize the main con
sions of this work. The method developed here is imp
mented in a code which, similarly to what happens for ma
years with the TM, is freely available.16

II. GENERAL PSEUDOPOTENTIAL THEORY

The majority of the pseudopotentials currently used
electronic structure calculations are generated from
atomic calculations. Within DFT this is done by assuming
spherical approximation for the potential in the se
consistent solution of the radial Kohn-Sham equation

F2
1

2

d2

dr2 1
l ~ l 11!

2r 2 1V@r;r !G rRnl~r !5enlrRnl~r !, ~1!

whereV@r;r ) is the self-consistent one electron potential

V@r;r !52
Z

r
1VH@r;r !1VXC

LDA@r~r !#, ~2!

r(r ) is the sum of the electron densities associated with
occupied wave functionsRnl(r ), VH@r;r ) is the Hartree po-
tential, andVXC

LDA@r(r )# is the local density approximation
for the exchange-correlation potential. The notationVH@r;r )
indicates a functional dependence on the densityr. Here and
elsewhere in the article we use atomic~Hartree! units unless
otherwise indicated.

Most pseudopotentials are then constructed such that
satisfy four general conditions.3,6,8

~1! The valence~the principal quantum numbern is here
omitted for simplicity! pseudo-wave-functions generate
from the pseudopotential should contain no nodes. T
stems from the fact that one would like to construct smo
pseudo-wave-functions and therefore the wiggles associ
with the nodes are undesirable. This condition will be nec
sarily superseded in Sec. IV in order to account for semic
states.

~2! The normalized atomic radial pseudo-wave-functi
~PP! with angular momentuml is equal to the normalized
radial AE wave function beyond a chosen cutoff radiusr cl ,

Rl
PP~r !5Rl

AE~r ! for r .r cl , ~3!

or converges rapidly to that value.
~3! The charge enclosed withinr cl for the two wave func-

tions must be equal

E
0

r cl
uRl

PP~r !u2r 2dr5E
0

r cl
uRl

AE~r !u2r 2dr. ~4!

~4! Of course, the valence AE and PP eigenvalues mus
equal,

e l
PP5e l

AE . ~5!

If a pseudopotential meets the conditions outlined abo
it is commonly referred to as a ‘‘normconservin
pseudopotential.’’3 Constructing a pseudo-wave-functio
that fulfills these requirements can be accomplished us
1-2
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FIRST-PRINCIPLES NORM-CONSERVING . . . PHYSICAL REVIEW B68, 155111 ~2003!
many different schemes.6–8 The nonuniqueness of thes
pseudopotentials is a clear indication of the available va
tional freedom which can be used at profit to produce
smooth pseudopotential.

Once the pseudo-wave-function is obtained, the scree
pseudopotential is then recovered by inversion of the ra
Kohn-Sham equation@Eq. ~1!#; explicitly,

Vscr,l
PP ~r !5e l2

l ~ l 11!

2r 2 1
1

2rRl
PP~r !

d2

dr2 rRl
PP~r !. ~6!

According to Eq.~6!, for a nodeless pseudo-wave-functio
the pseudopotential does not have any singularities, ex
possibly at the origin. From Eq.~6! we can also see two
more important details. Indeed, if we wish the pseudopot
tial to be continuous, then the pseudo-wave-function m
have continuous derivatives up to and including the sec
derivative. Moreover, if we wish to avoid a hard-co
pseudopotential with a singularity at the origin, the pseu
wave-function must behave asr l near the origin.

The screening from the valence electrons depe
strongly on the environment in which they are placed. If
remove the screening effects of the valence electrons
generate a so-called ionic pseudopotential, we can then
this potential in a self-consistent procedure to determine
electron screening in other environments. This is done
subtracting the HartreeVH

PP(r ) and exchange-correlatio
VXC

PP(r ) potentials calculated from the valence pseudo-wa
functions from the screened potential to generate an io
pseudopotential

Vion,l
PP ~r !5Vscr,l

PP ~r !2VH
PP~r !2VXC

PP~r !. ~7!

A major consequence of the pseudopotential genera
procedure just outlined is that each angular momentum c
ponent of the wavefunction will see a different potential. T
ionic pseudopotential operator is then

V̂ion
PP~r !5Vion,local

PP ~r !1(
l

Vnon,l~r !P̂l , ~8!

whereVion,local
PP (r ) is the local potential and

Vnon,l~r !5Vion,l
PP ~r !2Vion,local

PP ~r ! ~9!

is the nonlocal~or more precisely semilocal! potential for the
angular momentum componentl, andP̂l projects out thel th
angular momentum component from the wave function. T
local potential can in principle be arbitrarily chosen, b
since the summation in Eq.~8! will need to be truncated a
some value ofl, the local potential should be chosen su
that it adequately reproduces the atomic scattering for all
higher angular momentum channels.

III. THE TM SCHEME

As our new scheme constitutes a generalization of the
procedure, we describe first the essential points of the T
laying the grounds for the generalization to be carried ou
the next section. The TM fully complies with the four norm
15511
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conservation conditions stated previously, taking advant
of the variational freedom to impose additional constrai
which in turn lead to particularly smooth pseudopotentia
The radial part of the pseudo-wave-function is first defin
by the equations

Rl
PP~r !5H Rl

AE~r ! if r>r cl ,

r lep~r ! if r<r cl ,
~10!

wherep(r ) is a polynomial of order six inr 2,

p~r !5b01b2r 21b4r 41b6r 61b8r 81b10r
101b12r

12.
~11!

The seven coefficients of the polynomial are determin
from the following seven conditions:8 ~i! norm conservation
of charge within an input core radiusr cl , ~ii !–~vi! continuity
of the pseudo-wave-function and its first four derivatives
r cl ~which in effect imposes the continuity ofVscr,l(r ) and its
first two derivatives atr cl), and ~vii ! zero curvature of the
screened pseudopotential at the origin. This seventh co
tion leads to especially smooth pseudopotentials.

The derivatives of the wave function and screened pot
tials are evaluated from the numerical AE wave function a
screened potential using seven-order finite difference form
las, whereas the integrations required to ensure the no
conservation condition are evaluated numerically. In the fi
step the screened pseudopotential is obtained by inver
the Kohn-Sham radial equation@Eq. ~1!#, and in this case Eq
~6! can be written explicitly:

Vscr,l~r !5H VAE~r ! if r>r cl ,

« l1
l 11

r
p8~r !1

p9~r !1@p8~r !#2

2
if r<r cl .

~12!

IV. THE MRPP SCHEME

In the new formulation we must distinguish between tho
states of a givenl for which there will be a single pseudo
wave-function from those for which there will be more tha
one pseudo-wave-function. For the former states, the
scheme will still hold, which means it will be maintaine
whereas for the latter states a new scheme must be de
oped. Since we are interested here in transition metal
ments we will, for the sake of simplicity in the notation, giv
the scheme for those elements, but obviously the schem
completely general. In the 3d transition metals the semicor
states are the 3s and 3p states. Therefore, and for eachl
,2 value, we require that the pseudopotential one want
generate provides, as a solution of the radial Kohn-Sh
equation, nodeless pseudo-wave-functions which match
‘‘semicore’’ orbitals forr>r cl and alsosingle-node pseudo
wave-functions which match the valence orbitals forr
>r cl . We achieve this goal by generating the MRPP pseu
potential in the following way.

~1! We start by defining the form of the pseudo-wav
function for the semicores andp states (l ,2) as well as to
the valence states withl>2. These pseudo-wave-function
will be nodeless. Explicitly,
1-3
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l ,2, R0,l
PP~r !5H Rsc,l

AE ~r ! if r>r cl ,
r leq~r ! if r<r cl ,

~13!

l>2, R0,l
PP~r !5H Rv,l

AE~r ! if r>r cl ,
r lep~r ! if r<r cl ,

~14!

wherep(r ) is a polynomial of order 6 inr 2 as written in Eq.
~11!, andq(r ) is a polynomial of order 9 inr 2,

q~r !5c01c2r 21c4r 41c6r 61c8r 81c10r
101c12r

12

1c14r
141c16r

161c18r
18. ~15!

The index 0 inR0,l
PPexplicitly indicates that these are nodele

pseudo-wave-functions for which the inversion of the Koh
Sham equation is possible.Rsc,l

AE (r ) are the inner-shell~semi-
core! AE wave functions withl ,2, whereas forl>2 we can
use the outer-shell~valence! AE wave functions, denoted b
Rv,l

AE(r ).
We exploit the variational freedom in the three addition

polynomial coefficientsci in q(r ) to supplement the standar
set of seven conditions enumerated in the previous sec
and which are applicable to the nodeless semicore pse
wave-functions, with a group of three additional conditio
applied to the single-node valence pseudo-orbitals witl
,2:

~viii ! R1,l
PP~r cl!5Rv,l

AE~r cl! ~ l ,2! ~16!

~ ix! E
0

r cl
uR1,l

PP~r !u2r 2dr5E
0

r cl
uRv,l

AE~r !u2r 2dr ~ l ,2!

~17!

~x! «1,l
PP5«v,l

AE ~ l ,2!. ~18!

As a result, we obtain a system of linear equations for
new unknownsc2 , c4 , c6 , c8 , and c10, which, in turn,
become implicit functions of the remaining five unknow
c0 , c12, c14, c16, andc18. These coefficients, in turn, ar
the solution of the following nonlinear system of equation

5
ln E

0

r cl
r 2~ l 11!e2q~r !dr2 ln E

0

r cl
uRsc,l

AE ~r !u2r 2dr50,

c2
21c4~2l 15!50,

R1,l
PP~r cl!2Rv,l

AE~r cl!50,

ln E
0

r cl
uR1,l

PP~r !u2r 2dr2 ln E
0

r cl
uRv,l

AE~r !u2r 2dr50,

«1,l
PP2«v,l

AE50.
~19!

We solve this system of equations numerically using
multidimensional secant method of Broyden.17 As with any
nonlinear system of equations we need a good starting p
This is provided by the TM method applied to the semico
states, that is, we start fromq(r )5p(r ) which means that
c145c165c1850. By solving the nonlinear problem we de
termine numerical values for the coefficientsc0 , c12, c14,
15511
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c16, and c18, which in turn enables us to obtain explic
values for the remaining coefficients.

V. RESULTS AND DISCUSSION

In order to assess the reliability of the MRPP scheme,
tested the pseudopotentials for all transition metals~plus
copper! in two extreme coordination number cases: hom
nuclear dimers and the bulk solid. Here we only show
results for two elements, titanium and copper, selected fr
the two sides of the 3d series. All calculations were per
formed in the local density approximation to DFT, and t
exchange-correlation functional used corresponds to the
dew and Zunger parametrization18 of the quantum Monte
Carlo results obtained by Ceperley and Alder.19 As is well
known, the LDA does not describe the magnetization ofd
transition metals very well, and the multiplets of transitio
metal dimers are difficult to converge to self-consisten
The objective of our work is the accuracy of the pseudo
tential approximation and therefore how close it reprodu
the corresponding AE results. By restricting ourselves to
LDA and using a temperature broadening of 2000 K for st
occupancy, we simplify our computational task while focu
sing on the difference between the pseudopotential and
corresponding AE results, which is the ultimate benchm
for any pseudopotential approximation.

In spite of numerous constraints imposed in the constr
tion of the pseudo-wave-functions, there is still variation
freedom to construct the pseudopotentials. This reflects it
in, e.g., the different possibilities for the choice of the cuto
radii. For each element we took one single value ofr cut for
eachl value which, in addition to ensuring the inexistence
ghost states upon the Kleinman and Byland
tranformation,20 also optimizes the results for the hom
nuclear dimers. The final choices forr cut are given, in atomic
units, in Table I, together with other relevant parameters
the PW calculation. Input files to generate all 3d transition

TABLE I. Values utilized in the calculations leading to the r
sults discussed in the main text, are shown for each of the elem
considered. All distances are in Bohr, and energies in Hartree.
PW calculation of molecules, the size of the unit cell should
large enough so that the atoms in a given cell do not interact w
those in any of the neighboring cells. In all cases,r cut specifies the
l-dependent values for the cutoff radii used in the construction
the different pseudopotentials. Three values are tabulated for
pseudopotential corresponding, from left to right, to the cutoff ra
used for thes, p, and d components, respectively. For the MRP
pseudopotentials, and for eachl value, only one value for the cutof
radius has been used, although this is by no means compulsory~see
main text for details!.

Element Ti Cu

r cut(TM) 2.54 2.96 2.25 2.08 2.30 2.08
r cut(MRPP) 1.75 1.75 1.65 1.50 1.50 1.80
cell size~dimer! 27 27
Ecut(dimer) 40 40
Ecut(bulk) 71 64
1-4
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metal pseudopotentials are freely available, together with
pseudopotential generation code.16

Figure 1 shows a comparison between the MRPP and
TM pseudopotentials for the elements explicitly conside
in this work. Because of the higher ionic charge in the c
of the MRPP, the associated pseudopotential is significa
deeper than the TM, also to be able to accomodate not
the semicore but also the valence pseudo-wave-functions
course this more pronounced spatial variation of the MR
as compared to the TM reflects itself in the higher cut
energies required to ensure full convergence of the PW
culations. Nevertheless, the values used for the energy c
are still reasonable, as shown in Table I. The cutoff energ
larger for the bulk than for the dimer calculations, since
are using the internal pressure in the optimization of the
shape.21 For the dimers we computed the cohesive energy
a function of the interatomic distance, shown in Fig.
whereas for the bulk phase we computed the equilibri
lattice parameters, shown in Table II. For each of these qu
tities we provide results obtained at three levels of desc
tion: The present MRPP, the traditional TM results, and
AE results obtained with theADF package22 for the dimer
and taken from the literature for the bulk. The agreem
between the MRPP results and the AE results is excellen
all cases, the MRPP providing an overall improvement w
respect to the TM results.

In the case of the Ti dimer the improvement is drama
as can be judged from Fig. 2. The curve predicted by the
pseudopotential has a double well with a second low ly
minimum at 1.7 Bohr, in a region where the AE curve
strongly repulsive. That is a clear failure of the tradition
pseudopotential for the Ti dimer. The inclusion of the sem
core states and the valence states in the pseudopotentia
rects the problem, and the curve predicted by the MRPP f

FIG. 1. Comparison of different pseudopotentials for titaniu
and copper. The MRPP pseudopotentials are displayed~upper pan-
els! in comparison with the standard TM pseudopotentials~lower
panels! for titanium ~left panels! and copper~right panels!. In each
panel thes component is drawn with a solid line, thep component
is drawn with a a dotted line, and thed component is drawn with a
dash-dotted line.
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on top of the AE curve. This double well feature is al
present for scandium and vanadium at the TM level, dis
pearing at the MRPP level. It should be pointed out that t
double well is unphysical. Indeed, at the distances of
shorter minimum there is a sizeable overlap of the semic
electrons of the two systems with consequent large P
repulsion which is absent in the TM pseudopotential, b
accounted for in both the MRPP and AE calculations. In
bulk, the double well feature observed for the titanium dim
does not occur since for the large coordination number
bulk, d bonds do not appear and interatomic distances
never so short as for the dimer.

For copper both the TM and MRPP pseudopotentials
produce closely the AE curve. The 3s and 3p states are
much deeper in copper and can be safely treated as
states, as far as structural properties are concerned. How
for the calculation of excitation energies, there is some in
cation of GW calculations that they cannot be neglected. O
new scheme would allow their inclusion in suc
calculations.13

FIG. 2. Cohesive energy of dimers. The cohesive energy
homonuclear dimers of titanium~left panel! and copper~right
panel! have been computed as a function of atomic separation
at three levels of description of each constituent atom, leading
three curves per panel: AE~solid lines!, MRPP~solid squares!, and
TM ~dash-dotted lines!. The MRPP results exhibit an overall agre
ment with the AE results, eliminating the spurious double well p
tential obtained for titanium at the TM level.

TABLE II. The calculated equilibrium lattice constants are com
pared for three different methods for bulk Ti and Cu. The TM a
MRPP results were computed with the parameters specified in T
I, whereas the AE results for titanium were taken from Ref. 23 a
those for copper were taken from Ref. 24.

Element Lattice type TM MRPP AE

Ti hcp a 5.46 5.42 5.42
c 8.73 8.60 8.60

Cu fcc 6.74 6.72 6.73
1-5
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VI. CONCLUSIONS

We have developed a systematic scheme to generate
principles, transferable norm-conserving pseudopoten
which, while explicitly including semicore electrons whic
are known to play an important role in the physics and che
istry of transition metal atoms, are still sufficiently smooth
enable the efficient and accurate simulation of both low- a
high-dimension materials involving these types of eleme
The scheme developed uses the TM as a starting p
thereby taking advantage of the smoothing constraints
ready developed in the TM scheme. The results obtaine
h
o
ib

15511
st-
ls

-

d
s.
nt,
l-
in

the two limiting bonding situations corresponding to hom
nuclear dimers and bulk solid show, in all cases, excell
agreement between the predictions of the MRPP and th
resulting from benchmark AE calculations of the same s
tems.
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