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We develop a pseudopotential generation scheme which provides, in a systematic way, first-principles,
transferable, norm-conserving pseudopotentials which include, in addition to standard valence electrons, semi-
core electrons. The scheme improves the quality of the pseudopotential for some transition metal polyatomic
systems where the semicore states can play an active role in the chemical bonding of those systems. The
method is employed to generate pseudopotentials for Ti and Cu, taken as limiting examptesrarfisstion
metals, which are then used to study the structural properties of both homonuclear dimers and the bulk solid of
these elements. The results obtained put in evidence the excellent agreement obtained in all cases between the
pseudopotential results and benchmark all-electron calculations for the same systems.

DOI: 10.1103/PhysRevB.68.155111 PACS nuntder71.15.Dx, 71.20.Be, 31.15p

[. INTRODUCTION that produce softer pseudopotentials. An example of such a
type of soft pseudopotential is the Troullier and Martins
Electronic-structure calculations performed within the(TM) pseudopotentifilwhich allows the numerical simula-
framework of density functional theoffpFT) in its different  tion of complex systems to be carried out with significant
approximation flavors, have demonstrated their capacity natavings of memory and computing time, and which we gen-
only to describe accurately but also to predict, differenteralize in the present work in order to incorporate semicore
physical and chemical properties of complex molecular lig-states(see below:.
uid and solid state systems, ranging from phase transitions, One can easily generate a TM for any element of the
defects in semiconductors, structural and electronic propeiperiodic table. For most elements and applications this
ties of atomic clusters, the structure of and diffusion on surpseudopotential is very accurate in the sense that the error
faces, as well as the electromagnetic excitations in moleculeassociated with replacing the cores by a pseudopotential is
and solids. In many of these applications use has been madg@nificantly smaller than the error introduced by replacing
of pseudopotentials. the exact exchange and correlation by an approximate func-
Replacing the effect that chemically inert core states exerional such as the local density approximatidrDA). In
on the chemically active valence states by means of an efther words, the difference between similar pseudopotential
fective pseudopotential dates back to the early work ofand all-electronAE) calculations is smaller than the differ-
Fermi and Phillips and Kleinmaf,and has seen a sizeable ence between AE and experiment. There are, however, a few
amount of interest and further improvements since the devekases where the pseudopotential approximation is not satis-
opment of norm-conserving pseudopotenttafsThe physi-  factory and an even smaller number of cases where it fails.
cal reasoning behind the pseudopotential approximation i$hose cases correspond to atoms where the basic assumption
simple: Since the core electron wave functions of an atonof the pseudopotential approximation—that the core and va-
remain essentially unchanged when placed into differentence electron wave functions are well separated in both
chemical environments and since to a large extent the corspace and momentum—is not well verified, that is, when the
tribution of the core wave functions to chemical bonding iscore states have a large extension or are not strongly bound.
to enforce the orthogonality between the valence wave funcSuch states are called semicore states. Situations for which
tions and the core states, the true atomic potential can indedble predictions of usual pseudopotentials such as the TM fail
be replaced by a pseudopotential that reproduces the effecase the bond lengths of titanium, vanadium, or chromium
of the core electrons. As a result, transferable initio  dimers and small clustetd These @ transition metal dimers
pseudopotentiafs® have been successfully developed andhave a surprisingly short bond length. For instance, the dis-
used in band structure and total-energy calculations for contance between atoms in,Tis only 65% of the nearest neigh-
plex polyatomic system¥. For calculations with a plane bor distance in the bulk metal, and the type of bonding is
wave (PW) basis set, a pseudopotential that gives a fast contruly exotic (5 bonds. Another(albeit related situation is the
vergence of the calculated properties with increasing basigck of accuracy in the quasiparticle calculations of elec-
set size is commonly called a “soft” pseudopotentiaDue  tronic energies and lifetimes of transition metsidndeed,
to the popularity of PW calculations a great deal of effort haghese are situations in which the role of semicore electrons—
been made in identifying the characteristics of softness in #at is, those electrons in the completely filled shells below
pseudopotential, and in developing new generation methodbe valence shell—cannot be ignored, and indeed several
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methods have been proposed which allow the inclusion ods well as with those associated with the standard TM

semicore electrons as active in the pseudopotefftial. pseudopotentials. In Sec. VI we summarize the main conclu-
The problem with the 8 transition metals is that their sions of this work. The method developed here is imple-

valence configuration isg?4p°3d™, and due to the lack af ~ mented in a code which, similarly to what happens for many

electrons in the core thed3wave functions are compact and Years with the TM, is freely availabfé.

overlap significantly with the 8 and 3 semicore states.

This effect is larger in the early elements of the series where Il. GENERAL PSEUDOPOTENTIAL THEORY

those semicore states are less bound and more extended. An . . .

obvious solution would be to include those 8nd 3 semi- The majority of the pseuqlopotennals currently used in

core states as part of the valence in the pseudopotential geﬁ[ectron|c structure c_alc;ulatlons are generated fro"‘.‘ AE

eration scheme. That would require only a somewhat large tom|g: caIcuIat|on_s. W'th'n DFT this is doqe by assuming a

energy cutoff in the plane-wave expansion with respect to thgpher ical apprQX|mat|on for. the potential in t_he self-

3d electrons and a larger number of electrons in the valencec,OnSIStent solution of the radial Kohn-Sham equation

corresponding to a manageable increase in the necessary 1d2 1(1+1)

computing resources. For a large class of pseudopotentials, | — > W+ T-FV[p;I’) rRn(r)=e€nrRp(r), (1)

however, such a generalization is not possible for a technical

reason, namely, if a screened pseudopotential is generated @ereV[ p;r) is the self-consistent one electron potential

inverting the Schrdinger equation for a pseudo-wave-

function then the procedure is valid only for nodeless pseudo _ _ LDA

wave functions, and one can only have a single pseudo- VIpir) ==+ +Vulpir) +Vxc Ip(n], 2

wave-function of a given orbital with quantum numbein

order to warrant its nodeless structure. As tipeotbitals are  p(r') is the sum of the electron densities associated with the

unoccupied one can easily include the 8lectrons in those occupied wave functionR,(r), Vy[p;r) is the Hartree po-

class of schemes by considering p®8s"3d™ valence con- tential, andVy2*[p(r)] is the local density approximation

figuration. However, in this way one treats the 8nd 3  for the exchange-correlation potential. The notatgi p;r)

electrons on a different footing, a feature which is not easy tdndicates a functional dependence on the densitjere and

justify. One can also generate pseudopotentials from an iorelsewhere in the article we use atonfitartreg units unless

ized configuration 8°3p®3d™ (implying 4s°), but pseudo- otherwise indicated.

potentials generated from ionized configurations tend to be Most pseudopotentials are then constructed such that they

less accurate. Finally one can generate pseudopotentials wisiatisfy four general conditioris>®

several different reference energieis, this way by-passing (1) The valencethe principal quantum numberis here

the Schidinger equation inversion step, but that requires theomitted for simplicity pseudo-wave-functions generated

rewriting of the computer codes for the bulk that rely on thefrom the pseudopotential should contain no nodes. This
traditional pseudopotential form. stems from the fact that one would like to construct smooth

In this work we overcome this limitation of traditional pseudo-wave-functions and therefore the wiggles associated
pseudopotentials in general and of the TM scheme in partic[)Nith the nodes are undesirable. This condition will be neces-
lar by developing a pseudopotential generation schemaarily superseded in Sec. IV in order to account for semicore
which allows the inclusion of semicore states, while keepingstates.
the traditional semilocal form of the pseudopotential, which  (2) The normalized atomic radial pseudo-wave-function
means they can be used without further changes in bulk confPP) with angular momentunh is equal to the normalized
putational codes. The strategy constitutes a generalization ¢&dial AE wave function beyond a chosen cutoff radiys
the ideas underlying the TM method which have been repeat- o A
edly shown to provide a highly efficient pseudopotential gen- R () =R"(r) for r>rg, )
eration spheme. App!ication of this _scheme—which will beor converges rapidly to that value.

Qenoted in the following as the multlr_eference pseudopoten- (3) The charge enclosed within, for the two wave func-

tial (MRPP—to selected, representative elements shows theﬂons must be equal

the present method is not only capable of producing high-
quality results for diatomics and bulk matter—when bench- Fel el
marked against AE results—but also that one can now use f |R|PP(r)|2r2dr=J’ |RPE(r)|2r2dr. (4)
semicore electrons efficiently in a PW framework. 0 0

This paper is organized as follows. After a brief review of
general pseudopotential theory in Sec. Il, Sec. Il will review
the TM method, which will be generalized to the MRPP
recipe in Sec. |1V, in order to incorporate semicore electrons. €PP= (AE (5)

We test the method in Sec. V for several 8ansition met- ! !

als. We choose the rather unfavoratitea PW sensecase of  If a pseudopotential meets the conditions outlined above,
dimers as well as the more suitable bulk phases of thesé is commonly referred to as a “normconserving
elements and compare the results obtained with the newseudopotential.® Constructing a pseudo-wave-function
pseudopotentials with those originating from AE calculationsthat fulfills these requirements can be accomplished using

(4) Of course, the valence AE and PP eigenvalues must be
equal,

155111-2



FIRST-PRINCIPLES NORM-CONSERVING . .. PHYSICAL REVIEW 88, 155111 (2003

many different schemés® The nonuniqueness of these conservation conditions stated previously, taking advantage

pseudopotentials is a clear indication of the available variaef the variational freedom to impose additional constraints

tional freedom which can be used at profit to produce awhich in turn lead to particularly smooth pseudopotentials.

smooth pseudopotential. The radial part of the pseudo-wave-function is first defined
Once the pseudo-wave-function is obtained, the screenday the equations

pseudopotential is then recovered by inversion of the radial AE _

Kohn-Sham equatiofEqg. (1)]; explicitly, R-(r) if r=rg,

RPPr — .
() rleP™ if r<ry,

(10
[(1+1) 1 d?

Veg (N =e— 57 T 2rRP) d—,erFF’(H- (6)  wherep(r) is a polynomial of order six im?,

According to Eq.(6), for a nodeless pseudo-wave-function ~ P(r)=bo+bor?+b,r*+ber®+bgr®+byor %+ byor 2
the pseudopotential does not have any singularities, except 1D
possibly at the origin. From Eq6) we can also see two The seven coefficients of the polynomial are determined
more important details. Indeed, if we wish the pseudopotenfrom the following seven conditiorfs(i) norm conservation
tial to be continuous, then the pseudo-wave-function muspf charge within an input core radius; , (ii)—(vi) continuity
have continuous derivatives up to and including the secongf the pseudo-wave-function and its first four derivatives at
derivative. Moreover, if we wish to avoid a hard-core r, (which in effect imposes the continuity Wi (r) and its
pseudopotential with a singularity at the origin, the pseudofirst two derivatives at,), and (vii) zero curvature of the
wave-function must behave asnear the origin. screened pseudopotential at the origin. This seventh condi-
The screening from the valence electrons dependgon leads to especially smooth pseudopotentials.
strongly on the environment in which they are placed. If we  The derivatives of the wave function and screened poten-
remove the screening effects of the valence electrons anghls are evaluated from the numerical AE wave function and
generate a so-called ionic pseudopotential, we can then usgreened potential using seven-order finite difference formu-
this potential in a self-consistent procedure to determine thgys, whereas the integrations required to ensure the norm-
electron screening in other environments. This is done byonservation condition are evaluated numerically. In the final
subtracting the Hartre&/[{r) and exchange-correlation step the screened pseudopotential is obtained by inverting
Vig(r) potentials calculated from the valence pseudo-wavethe Kohn-Sham radial equati¢kq. (1)], and in this case Eq.
functions from the screened potential to generate an ioni¢6) can be written explicitly:

pseudopotential .
Vae(r) if r=rg,
Vioni (1) =V (1) = VE(r) = Vig(r). D V(= I+1 p"(N+[p' (N1
' e|+—p’(r)+f if r<rg.

A major consequence of the pseudopotential generation r 12
procedure just outlined is that each angular momentum com- (12
ponent of the wavefunction will see a different potential. The
ionic pseudopotential operator is then IV. THE MRPP SCHEME

In the new formulation we must distinguish between those
VRN =VER ocal 1)+ 2 Voo (NP, (8)  states of a giver for which there will be a single pseudo-

! wave-function from those for which there will be more than
one pseudo-wave-function. For the former states, the TM
scheme will still hold, which means it will be maintained,

_\/PP PP whereas for the latter states a new scheme must be devel-

Vioni (1) =Vion (1) = Vion jocal 1) © oped. Since we are interested here in transition metal ele-
is the nonlocalor more precisely semilogapotential for the  ments we will, for the sake of simplicity in the notation, give
angular momentum componentand P, projects out théth ~ the scheme for those elements, but obviously the scheme is
angular momentum component from the wave function. Th&éompletely general. In thedBtransition metals the semicore
local potential can in principle be arbitrarily chosen, butStates are thes3and 3 states. Therefore, and for eath
since the summation in Eg8) will need to be truncated at <2 value, we require that the pseudopotential one wants to
some value of, the local potential should be chosen suchgenerate provides, as a solution of the radial Kohn-Sham

that it adequately reproduces the atomic scattering for all thgquation, nodeless pseudo-wave-functions which match the
higher angular momentum channels. “semicore” orbitals forr=r and alsosingle-node pseudo-

wave-functions which match the valence orbitals for
=r.. We achieve this goal by generating the MRPP pseudo-
potential in the following way.

As our new scheme constitutes a generalization of the TM (1) We start by defining the form of the pseudo-wave-
procedure, we describe first the essential points of the TMfunction for the semicore andp states [<2) as well as to
laying the grounds for the generalization to be carried out irthe valence states with=2. These pseudo-wave-functions
the next section. The TM fully complies with the four norm- will be nodeless. Explicitly,

whereVir ..(r) is the local potential and

Ill. THE TM SCHEME
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AE if r= TABLE I. Values utilized in the calculations leading to the re-
Rscl(r) M r=re, . . .
r'éq(’) it r<r (13 sults discussed in the main text, are shown for each of the elements
e considered. All distances are in Bohr, and energies in Hartree. In a
AE . PW calculation of molecules, the size of the unit cell should be
=2 Rpp(r): Ru,|(r) if r=re, (14) large enough so that the atoms in a given cell do not interact with
' ol r'eP™ if r<ry, those in any of the neighboring cells. In all cases, specifies the

<2, Rg’f’(r)z[

) ] -, ) ] I-dependent values for the cutoff radii used in the construction of
wherep(r) is a polynomial of order 6 im= as written in EQ.  the different pseudopotentials. Three values are tabulated for each

(11), andq(r) is a polynomial of order 9 im?, pseudopotential corresponding, from left to right, to the cutoff radii
5 4 5 o 10 1 used for thes, p, andd components, respectively. For the MRPP
g(r)=co+Core+cyr”+cgr>+Cgr®+Cygf -+ Cypof pseudopotentials, and for eactalue, only one value for the cutoff

radius has been used, although this is by no means compuiseey

14 16 18
FCpf T+ Crgl T Cogl (15 ain text for details

The index 0 inRg) explicitly indicates that these are nodeless

pseudo-wave-functions for which the inversion of the Kohn- Element m cu
Sham equation is possibIR4G(r) are the inner-shellsemi- e 2.54 2.96 2.25 2.08 2.30 2.08
core) AE wave functions with <2, whereas foF=2 we can r cud MRPP) 1.75 1.75 1.65 1.50 1.50 1.80
use the outer-shelvalence AE wave functions, denoted by cell size(dimen 27 27
ROT(r). Eu(dimer) 40 40

We exploit the variational freedom in the three additional  E_(bulk) 71 64

polynomial coefficientg; in q(r) to supplement the standard
set of seven conditions enumerated in the previous section,

and which are applicable to the nodeless semicore pseude;s, andc;g, which in turn enables us to obtain explicit
wave-functions, with a group of three additional conditionsvalues for the remaining coefficients.

applied to the single-node valence pseudo-orbitals With

<2:

V. RESULTS AND DISCUSSION

(viii) Rilp(rcl): Rﬁﬁ(rcl) (1<2) (16) In order to assess the reliability of the MRPP scheme, we
tested the pseudopotentials for all transition metalsis
coppej in two extreme coordination number cases: homo-
nuclear dimers and the bulk solid. Here we only show the

(17) results for two elements, titanium and copper, selected from
the two sides of the @ series. All calculations were per-

(x) efP=e2% (1<2). (18)  formed in the local density approximation to DFT, and the
’ ’ exchange-correlation functional used corresponds to the Per-

As a result, we obtain a system of linear equations for thelew and Zunger parametrizatidnof the quantum Monte

new unknownsc,, C4, Cg, Cg, andcjy, Which, in turn, Carlo results obtained by Ceperley and AlfeAs is well

become implicit functions of the remaining five unknowns known, the LDA does not describe the magnetization of 3

Co, C12, Cy4, C1p, andcyg. These coefficients, in turn, are transition metals very well, and the multiplets of transition

the solution of the following nonlinear system of equations:metal dimers are difficult to converge to self-consistency.

The objective of our work is the accuracy of the pseudopo-
( n frdrz“ﬂ)ezq(”dr—ln frC||RAE(r)|2r2dr:O tential approximation and therefore ho.w.close it reproduces
0 g | sl ’ the corresponding AE results. By restricting ourselves to the

LDA and using a temperature broadening of 2000 K for state

occupancy, we simplify our computational task while focus-

(i) forC||Rf",°(r)|2r2dr=f;C||RUAE(r)|2r2dr (1<2)

co+cy(21+5)=0,

{ Rif’(rd)_Rﬁﬁ(rd):o, sing on the difference between the pseudopotential and the
] ] corresponding AE results, which is the ultimate benchmark
an’ C||Rff’(r)|2r2dr—lnf C||RA$(r)|2r2dr=0, for any pseudopotential approximation.
0 ' o In spite of numerous constraints imposed in the construc-
\ ePP—ehE_ . tion of the pseudo-wave-functions, there is still variational

(19 freedom to construct the pseudopotentials. This reflects itself
in, e.g., the different possibilities for the choice of the cutoff
We solve this system of equations numerically using theadii. For each element we took one single value gf for
multidimensional secant method of Broyd€ms with any  eachl value which, in addition to ensuring the inexistence of
nonlinear system of equations we need a good starting poinghost states upon the Kleinman and Bylander
This is provided by the TM method applied to the semicoretranformatior’® also optimizes the results for the homo-
states, that is, we start from(r)=p(r) which means that nuclear dimers. The final choices fiqs, are given, in atomic
C14=C16=C1g=0. By solving the nonlinear problem we de- units, in Table I, together with other relevant parameters of
termine numerical values for the coefficiertg, c1,, C14, the PW calculation. Input files to generate atl &ansition
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FIG. 1. Comparison of different pseudopotentials for titanium ~ FIG. 2. Cohesive energy of dimers. The cohesive energy of
and copper. The MRPP pseudopotentials are displayeper pan- homonuclear dimers of titaniundleft pane) and copper(right
els) in comparison with the standard TM pseudopotentiiser ~ Pane) have been computed as a function of atomic separation and
panel3 for titanium (left panel3 and coppefright panels. In each ~ at three levels of description of each constituent atom, leading to
panel thes component is drawn with a solid line, tipecomponent  three curves per panel: ABolid lineg, MRPP(solid squares and
is drawn wih a a dotted line, and theécomponent is drawn with a M (dash-dotted lings The MRPP results exhibit an overall agree-
dash-dotted line. ment with the AE results, eliminating the spurious double well po-

tential obtained for titanium at the TM level.

metal pseudopotentials are freely available, together with the
pseudopotential generation cotfe. on top of the AE curve. This double well feature is also
Figure 1 shows a comparison between the MRPP and thgresent for scandium and vanadium at the TM level, disap-
TM pseudopotentials for the elements explicitly considerecdearing at the MRPP level. It should be pointed out that this
in this work. Because of the higher ionic charge in the caselouble well is unphysical. Indeed, at the distances of the
of the MRPP, the associated pseudopotential is significantlghorter minimum there is a sizeable overlap of the semicore
deeper than the TM, also to be able to accomodate not onlglectrons of the two systems with consequent large Pauli
the semicore but also the valence pseudo-wave-functions. @&pulsion which is absent in the TM pseudopotential, but
course this more pronounced spatial variation of the MRPRccounted for in both the MRPP and AE calculations. In the
as compared to the TM reflects itself in the higher cutoffbulk, the double well feature observed for the titanium dimer
energies required to ensure full convergence of the PW caldoes not occur since for the large coordination number of
culations. Nevertheless, the values used for the energy cutoiffulk, § bonds do not appear and interatomic distances are
are still reasonable, as shown in Table I. The cutoff energy ismever so short as for the dimer.
larger for the bulk than for the dimer calculations, since we For copper both the TM and MRPP pseudopotentials re-
are using the internal pressure in the optimization of the celproduce closely the AE curve. Thes3and 3 states are
shapé’ For the dimers we computed the cohesive energy amuch deeper in copper and can be safely treated as core
a function of the interatomic distance, shown in Fig. 2,states, as far as structural properties are concerned. However,
whereas for the bulk phase we computed the equilibriunfor the calculation of excitation energies, there is some indi-
lattice parameters, shown in Table II. For each of these quareation of GW calculations that they cannot be neglected. Our
tities we provide results obtained at three levels of descripnew scheme would allow their inclusion in such
tion: The present MRPP, the traditional TM results, and thecalculations'?
AE results obtained with thapr packagé” for the dimer
and taken from the literature for the bulk. The agreement TABLE II. The calculated equilibrium lattice constants are com-
between the MRPP results and the AE results is excellent ipared for three different methods for bulk Ti and Cu. The TM and
all cases, the MRPP providing an overall improvement withMRPP results were computed with the parameters specified in Table
respect to the TM results. I, whereas the AE results for titanium were taken from Ref. 23 and
In the case of the Ti dimer the improvement is dramatic those for copper were taken from Ref. 24.
as can be judged from Fig. 2. The curve predicted by the TM
pseudopotential has a double well with a second low lyingElement Lattice type ™ MRPP AE
minimum at 1.7 Bohr, in a region where the AE curve is hep a 546 542 542
strongly repulsive. That is a clear failure of the traditional . 8.73 8.60 8.60
pseudopotential for the Ti dimer. The inclusion of the semi- ) i '
core states and the valence states in the pseudopotential corey fcc 6.74 6.72 6.73
rects the problem, and the curve predicted by the MRPP falls
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VI. CONCLUSIONS the two limiting bonding situations corresponding to homo-
quclear dimers and bulk solid show, in all cases, excellent

agreement between the predictions of the MRPP and those

prlr.1C|pIes,. transf.er.ablg horm-conserving pseUdOpOtent'alPesulting from benchmark AE calculations of the same sys-
which, while explicitly including semicore electrons which tems

are known to play an important role in the physics and chem-

istry of transition metal atoms, are still sufficiently smooth to

enable_ the e_fficient an.d accurate simulation of both low- and ACKNOWLEDGMENTS
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