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Abstract.  Evolutionary  game  theory  has  become  a  powerful  framework  to  investigate  the
evolution of  cooperation.  Games  such  as  the  prisoner's  dilemma or  the  snowdrift  game are
frequently used to model cooperation, and to study its  emergence in the context of Darwinian
evolution. Until recently, spatial structure was understood as one of the main mechanisms helping
the sustainability of cooperation. However, recent results for the snowdrift game have cast serious
doubts on the general applicability of this result. Here we show that cooperation may become the
dominating strategy, both for the prisoner's dilemma and the snowdrift game, depending on the
underlying network of contacts between individuals. By recasting the problem in the framework of
graph theory, and associating to the network of contacts graphs of Small-World and Scale-Free
type, we demonstrate that graphs exhibiting power-law degree distributions resulting from the
mechanisms of growth and preferential attachment provide excellent conditions for cooperation to
dominate. These results apply from very large population sizes down to communities with nearly
one  hundred individuals. 
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INTRODUCTION

Cooperation is an essential ingredient of evolution. We know that animals cooperate
in families to raise their offsprings and in groups, to prey as well as to reduce the risk of
predation.   However,  understanding the emergence of cooperation in the context  of
Darwinian evolution remains a challenge to date. The theory of reciprocal altruism, set
forward  by  Trivers1 in  1971, has  been  formalized  ten  years  later  by  Axelrod  and
Hamilton2 using  an  evolutionary  game-theoretic3,4 model  of  the  repeated  Prisoner's
Dilemma (PD).  In the  PD,  the fitness advantage of defectors makes such strategies
evolutionary  stable.  As  such,  numerous  studies  have  been  carried  out  in  order  to
elucidate  the  mechanisms  responsible  for  the  persistence  of  cooperative  behaviour,
thereby resolving the apparent contradiction between the elementary predictions of the
game and empirical  evidence. Among the different possibilities,  it  has become well
established5,6,7 that  incorporation  of  spatial  structure  in  the  PD acts  to  enhance
cooperation, since spatial structure allows the formation of clusters of cooperators which
may acquire the necessary “critical size” and resist invasion by defectors. 
Recently8 the demonstration that, in the Snowdrift Game (SG), incorporation of spatial
structure may inhibit cooperation brought onto questionable grounds the conventional
wisdom emanating from the PD studies, a feature which is more worrisome in view of



the observation that several biological communities may engage in games other than the
PD, such as the SG or other hawk-dove type games8-11. 

FIGURE 1. Different NOCs  a) Regular graph with N =12 vertices each of which has z = 4 edges. z = N-
1  leads to a fully-connected graph. b) Small-World graph, generated from a) using the value 0.2 for the
rewiring probability pSW  (see main text for details). c) Random graph, obtained in the limit pSW = 1. d) SF
graph, generated using model of Barabasi and Albert for m = m0 = 2 (see methods); Histograms : Degree
distributions d(k) computed for each type of graphs and N=104; d(k)= Nk / N, where Nk  gives the number
of vertices with k edges.  In all cases the average connectivity z of the graphs is 4.

Up to now, however,  studies of the evolution of cooperation have been mostly carried
out in two extreme scenarios: Purely unstructured populations (well-mixed limit, also
known  in  physics  as  the  mean-field  approximation)  and  “spatially  structured”
populations. In the language of graph theory both situations may be associated with
regular graphs (Fig.  1-a),  the well-mixed limit  taking place for the fully  connected
graph. At variance with Fig. 1, spatial structure is typically implemented on so-called
2d-lattices, such as a square lattice, in which individuals are constrained to interact
solely  with their  closest  neighbours, typically  the  “nearest” 4 or 8,  defining also a
regular Network Of Contacts (NOCs). All these types of regular graphs share the same
degree distribution d(k) (defined for a graph with N vertices as d(k)= Nk / N, where Nk

gives the number of vertices with k edges), which is given by δ(k- z), where  z  is the
degree (number of edges) of each vertex. As increasingly recognized12-16, both scenarios
constitute rather unrealistic representations of real world NOCs, which one intuitively



associates with intermediate situations, in which “spatial structure” coexists with “long-
range”  connections,  or  shortcuts  (Figs.  1-c  and  1-d).  Indeed,  such  topologies  are
characteristic of a plethora15,16 of everyday natural, social and technological networks,
and as such we expect them to play a role in the evolution of cooperation. The “Small-
World”  graphs  (SW)  of  Watts  and  Strogatz12 (Fig.  1-c)  provide  one possibility  of
accounting for such scenarios, although they lack the power-law degree distribution so
characteristic13-16 of real-world NOCs. Such a feature is easily obtained with the Scale
Free (SF) graphs of Barabasi and Albert13 (Fig. 1-d). Here we recast the study of the
evolution of cooperation as encapsulated in the PD and the SG games in communities in
which the NOCs are associated with graphs of SW and SF types. 

METHODS

Networks Of Contacts

Starting from a regular ring (Fig.  1-a), for a fixed number  N of elements of the
community (vertices of the graph) and for a given number of connections z per vertex
(edges of the graph), we generate a SW graph by rewiring, with probability pSW, each
edge of the graph. Rewiring means here replacing the original edge maintaining its
origin and choosing randomly the ending vertex, such that self-connections – loops –
and double connections are excluded. At the end of the rewiring process, one no longer
has a single peak degree distibution, but still one has an average value of the degree
distribution <d(k)> given by z. 
Besides the degree distribution d(k), the probabilistic nature of the construction of SW
(and  SF,  see below) graphs leads to many different realizations of  NOCs for given
values  of  the  parameters.  Consequently,  other  quantities  provide  additional
information15,16 which characterizes a given class of  NOCs namely, the average path
length  L,  providing the number of edges  in the shortest  path between two vertices,
averaged over all  pairs of vertices,  and  the cluster coefficient  C,  which provides  a
measure of the extent to which direct neighbours of a given vertex are direct neighbours
of each other, being roughly proportional to the number of such triangular connections.
For the SW graphs, small values of  pSW  > 2/(zN) ensure large values of C ~ Cregular  ~
(3z-6)/(4z-4) and small values of L ~ Lrandom<< Lregular ~ N/z , characteristic of the SW
regime, whereas as  pSW  → 1 we fall in the limit of a random graph, for which Crandom ~
z/N and Lrandom ~ ln(N) / ln(z) are both small. 
On the other hand, the construction of a SF graph involves two processes:  1- Growth:
Starting with a small number (m0) of vertices, at every timestep we add a new vertex
with m ≤ m0 edges that link the new vertex to m different vertices already present in the
system; 2-  Preferential attachment:  When choosing the vertices to which the new
vertex connects, we assume that the probability pi that a new vertex will be connected to
vertex i depends on the degree ki of vertex i: pi= ki / Σki . After t timesteps this algorithm
produces a graph with N = t + m0 vertices and mt edges. We have also tested one variant
14 of this SF model, in which the preferential attachment probability pi is replaced with a
uniform attachment probability. For the less studied  SF graphs, typically15,16 C ~ Crandom

whereas L ~ ln(N)/ln[ln(N)], reflecting the ultra-small 17 nature of these networks.  



Games

In the simple, one-shot PD adopted here,  individuals are either cooperators or defectors,
acting accordingly whenever two of them interact. They both receive  R upon mutual
cooperation and  P upon mutual defection. A defector exploiting a cooperator gets an
amount  T and the exploited cooperator receives S, such that  T > R > P > S.  On the
other hand, in the  SG, we have  T > R > S > P. Thus, at variance with the  PD, for
which it is best to defect regardless of the opponent's decision, in the SG the best action
depends on the opponent: to defect if the other cooperates, but to cooperate if the other
defects.  This  leads  to  a  different  evolutionary  behaviour  for  the  two  games8.  In
particular,  for  the  SG played  in  infinite,  well-mixed  populations,  that  is,  for  an
underlying fully connected graph, and following replicator dynamics18,  the equilibrium
frequency of cooperators is given by  1 -  r, with r  the cost-to-benefit ratio of mutual
cooperation (defined below). Following common practice5,8, we start by rescaling the
games such that each depends on a single parameter. For the PD, we make 2>T=b>1,
R=1 and P=S=0, where b represents  the advantage of defectors over cooperators5. For
the SG, we make  T = β > 1, R= β - 1/2, S = β - 1 and P=0, such that the cost-to-benefit
ratio of mutual cooperation can be written as r=1/(2 β-1), with 0 ≤  r ≤ 1.

Simulations

Individuals are placed on the vertices of graphs with N =104 vertices; we use periodic
boundary conditions for the regular ring graphs and the values  z ≥ 4, 0 ≤  pSW ≤ 1 and
m=m0 ≥ 2 (z=<d(k)>=2m0). Following Hauert & Doebeli8, equilibrium frequencies of
cooperators  and  defectors are  obtained by  averaging over  1000  generations after  a
transient time of 10000 generations, starting from an equal distribution of strategies
among the elements of the population. We confirmed that averaging over larger periods
or using  different  transient  times did  not  change the results,  although  the  transient
period depends on the characteristic path length of the system, which in turn depends on
z, N, and pSW. For different values of the parameters, the evolution of the frequency of
cooperation as a function of  r for the SG and b for the PD has been computed. To this
end, each data point in the Figures results from an average over 20 realizations of the
same type of NOCs specified by the appropriate parameters (N, z, pSW and m = m0).  

Evolution

The  following  transition  probabilities  constitute  the  finite  population  analogue of
replicator dynamics8, to which simulation results converge in the limit of well-mixed
populations. In each generation,  all  pairs of individuals  x and  y,  directly connected,
engage in a single round of a given game, their accumulated payoffs being stored as Px

and Py, respectively. Whenever a site x is updated, a neighbour y is drawn at random
among all kx neighbours; whenever  Py > Px   the chosen neighbour takes over site x with
probability given by (Py – Px)/(D k>), where k> is the largest between kx  and ky and D=T-
S for the PD and D=T-P for the SG.  



RESULTS

Fig.2 shows the results of our  simulations for the  PD and the  SG,  respectively,
evolving  on regular  ring-graphs  for  different  values  of  z.  They confirm the  results
obtained by Hauert and Doebeli8 on 2d-lattices. 

FIGURE 2. Fraction of cooperators for regular NOCs and different values of z. Left panel: Results for
the PD are plotted as a function of the temptation to defeat b. Right panel: Results for the SG are plotted
as a function of the cost to benefit ratio r (see  main text for details). 

Furthermore,  they  show how  z influences  the  evolution  of  cooperation  on  regular
NOCs. Indeed, deviations from the well-mixed population limits are more pronounced
the smaller the value of z. Moreover, from Fig. 2 it is clear that for  z =  64 the well-
mixed limit has already been reached for the  PD. On the other hand, for the  SG that
limit will only be reached whenever  z ~ N-1 (we confirmed that the well-mixed limit is
also obtained for the SG).

Fig. 3 shows what happens as one moves away from regularity for the NOCs, such that
d(k)  is  not  anymore a  delta  distribution (we consistently  interpret  z  as  <d(k)>,  the
average value of the degree distribution). In the interval 2/(zN) ≤ pSW ≤  0.1, in the SW
regime, the shape of the curve for the frequency of cooperation gets gradually smoother
with increasing  pSW, for both games, up to the shape shown for  pSW  = 0.1.   As one
increases pSW  inside this interval the value of L drops significantly compared to Lregular,
whereas C ≈ Cregular  . For   0.1 ≤  pSW  ≤ 1.0,   L remains small (L ≈ Lrandom) whereas C
drops significantly. For large  pSW   we observe an overall enhancement of cooperation,
in both games, over a wide range of the corresponding parameters, which constitutes a
remarkable result, at odds with previous studies5,8. 



FIGURE 3. Fraction of cooperators for the SW NOCs of Watts and Strogatz, for different values of pSW.
Left panel:  Results for the  PD are plotted as a function of the temptation to defeat  b.  Right panel:
Results for the  SG are plotted as a function of the cost to benefit ratio  r. An overall enhancement of
cooperation is observed, for both games, with respect to the well-mixed limit and regular graphs, although
cooperation is best sustained for small values of  b and r. 

Similarly  to  pSW  =0,  we observe that the deviations from the well-mixed results get
smaller as we increase z, approaching the well-mixed population limit as z → N-1. As
such,  for pSW =1 and z=4 we get the maximal deviations from the well-mixed results. 

Fig.  4  shows the corresponding  results  for a  SF NOCs,  for  z  =  m/2 = m0/2  ≥  4,
exhibiting a completely different behaviour: Cooperation dominates in both games and
for the entire domain of parameters b and r, which constitutes an unprecedented result19.
On the folllowing we elucidate the mechanisms on the basis of these results as well as
the dependence of such results on the community size N .  

Besides the small values of C and L, graphs of SF type exhibit a power law scaling of
the degree distribution, such that many vertices have a very small connectivity, whereas
a few vertices act as hubs, with a high degree of connectivity. The occurrence of these
hubs results from the preferential attachment rule. As such, we investigate the impact of
preferential attachment (and of growth, see below) in the evolution of cooperation. 
To this end we modify14 the rules of construction of the  SF graphs by replacing the
preferential attachment rule by a uniform attachment rule. We compare the results of
both models generated with m = m0 =2 with those obtained with SW graphs with  pSW

=1 and  z = 4, which provide a possible limit to which the SF evolve whenever growth
and preferential attachment are not included. 



FIGURE 4. Fraction of cooperators for the SF NOCs of Barabasi and Albert, for different values of z.
Left panel:  Results for the  PD are plotted as a function of the temptation to defeat  b.  Right panel:
Results for the  SG are plotted as a function of the cost to benefit ratio  r. Contrary to previous results,
cooperation dominates for the whole ranges of b and r on SF graphs. Contrary to the results for regular
graphs, cooperation gets enhanced with increasing  z, up to a critical value, above which cooperation
collapses, rapidly approaching the well-mixed limit. 

Fig. 5 shows the impact of the different rules on the evolution of cooperation for both
the PD and the SG. Results show that both processes are important in what concerns the
evolution of cooperation. 
Preferential  attachment  is  mainly  responsible  for  the  prevalence  of  cooperation for
unfavourable  values  of  the  game  parameters,  but  the  role  of  growth  cannot  be
overlooked and contributes, in a sizeable way, for establishing cooperation as an overall
dominating strategy in both games. Yet, the emergence of “hubs” due to preferential
attachment,  together  with  the  intricate  vertex  correlations  built  up  during  graph
generation, which ensures that “hubs” get directly connected to each-other, provide the
right mechanisms which turn cooperation into the dominating strategy on both games.  



FIGURE 5. Impact of preferential attachment and growth on the evolution of cooperation. Left panel:
Results for the  PD as a function of the temptation to defeat  b.  Right panel: Results for the  SG as a
function of the cost to benefit ratio r. Solid triangles show results for the standard SF model, solid squares
show results the SF model with uniform attachment and solid circles show results for  SW graphs with

pSW=1. Both growth and preferential attachment are necessary to ensure the dominance of cooperation,
for both games and throughout the entire parameter ranges. 

Evolution Of Cooperation On Small Communities

 We finally investigated the dependence of the results on the population size N, for  z
= 4. We repeated the simulations, progressively reducing the population size. We were
able to obtain stable results, qualitatively identical to those shown in Figs. 2-5, down to
N=128, as shown in Fig. 6 for populations with sizes N=512 and N=128. 
The results in Fig.  6 clearly  demonstrate that the evolution of cooperation in small
communities evolves very much in the same way as it does in much larger ones. It is
noteworthy that for such small values of N the degree distribution associated with SF
graphs is not at all scale-free. Yet, growth and preferential attachment “cooperate” to
induce vertex  correlations  which lay  the  grounds  for  cooporation to  dominate.  For
values of N smaller than N ≈ 100, the averages over many realizations of graphs of a
given type do not converge to a well defined value, a feature which is not surprising,
taking into account the probabilistic rules of construction of those graphs. Indeed, for
small  values  of   N,  stochastic  extinction  of  cooperators  happens  for  particular
realizations of a given NOCs, as such precluding a clearcut result for the evolution of
cooperation. This feature is a size effect which clearly disappears for large N.



FIGURE 6.  Evolution of Cooperation on small communities. Simulations were carried out for  N=512
(left panels) and N=128 (right panels). In all cases z=4. Upper panels: Results for the PD. Lower panels:
Results for the SG. Comparison  between these results and those of Figs. 2-5 show that the qualitative
features of the evolution of cooperation remain the same. For N=128 the oscillations at high values of b in
the PD game indicate that, for such values at which competition between defectors and cooperators takes
place  more  effectively,  the  small  population  size  enhances  the  dependence  of  cooperation  on  the
particulars of each realization of a NOCs. 

Hub Dynamics

 In the well-mixed limit  we know that  a single  defector placed in  an otherwise
cooperative population will ultimately invade the entire population. For SF NOCs, it is
easy to convince oneself that the best location for placing a single defector is on the hub
with largest  connectivity.  Starting  from this  scenario,  the  evolutionary  dynamics  is
startling, as shown in Fig. 7, for N=104, z=4  and b={1.1,1.5,1.9}, in which we plot the
evolution  of  the  fraction  of  direct  neighbours  of  the  defecting  hub  which  are
cooperators. The initial defector quickly invades the nearest (cooperative) neighbours,
reducing their frequency to roughly 20%. However, the invaded neighbours are mostly
individuals with low connectivity, since other hubs, initially populated with cooperators,
will resist invasion by the initial defector, due to their high fitness resulting from many
mutual cooperative interactions. After a few generations the original defector has less
and  less  cooperators  to  exploit,  which  reduces its  fitness,  thereby  becoming  more
susceptible for being invaded by a directly connected cooperator located in a nearby
hub. Indeed, cooperator invasion originates preferentially from hubs. Incidentally, hubs
with  lower  connectivity  may be  invaded by  defectors,  but  will  be  re-occupied  by



cooperators at a later stage. 
The overall result is that the original defector invariably gets replaced by a cooperator.
Indeed, we never obtained a situation in which the defector was able to survive. In order
to provide the initial  defector with the capacity to invade the whole population, one
needs to increase the value z, since beyond a critical value (which depends on N and b)
the dynamics of evolution will  reduce to the well-mixed limit.  As noted before, the
inter-connectedness of hubs plays an important role, and this is a feature which arises
naturally in the scale free model of Barabasi and Albert, ensuring the sustainability of
cooperation.   

FIGURE 7. Evolution of cooperators around largest hub. Starting with a single defector placed in the hub
with largest connectivity, the fraction of direct neighbours who are cooperators is computed throughout
evolution, for a population of N =104 individuals and  z = 4, and for the three values of b indicated. The
overall behaviour, independent of  b, shows that the initial defector invades approximately 80% of its
immediate  neighbours,  after  which  the  largest  hub  is  invaded  by  a  cooperator  (originating from a
connected hub, taking place right before each jump), leading to a rapid saturation of the hub's neighbours
with cooperators.  In what concerns this dynamical behaviour,  b acts to  increase the amount of time
necessary for the largest hub to be invaded by a cooperator.

CONCLUSIONS

Cooperation is very sensitive to the underlying NOCs on which it evolves. Different
NOCs  may determine completely different fates for the evolution of cooperation. As
such, their role cannot be overlooked, since the underlying topology of the NOCs may
render  cooperation the  dominating  trait  throughout  evolution.  We hope the  present
results will  stimulate further studies of the impact of the  NOCs on the evolution of
cooperation in particular, and evolutionary game theory in general. For instance, it is
clear that the criteria for evolutionary stability in finite populations recently defined11

should be re-examined in light of the present results.    



ACKNOWLEDGMENTS

Discussions  with  Nelson  Bernardino  and  João  Rodrigues  are  gratefully
acknowledged.  

REFERENCES

1. Trivers, R. The evolution of reciprocal altruism, Q. Rev. Biol. 46, (1971) 35-37. 
2. Axelrod, R. and Hamilton, W. D., The evolution of cooperation, Science 211, 1390 (1981) .
3. von Neumann, J. and Morgenstern, O. Theory of Games and Economic Behaviour (Princeton Univ.

Press, Princeton, 1944)
4. Maynard Smith, J. Evolution and the Theory f Games, (Cambridge Univ. Press, Cambridge, 1982) . 
5. Nowak, M. A. and May, R. M. Evolutionary games and spatial chaos. Nature 359,  826–829 (1992) .
6. Killingback,  T.,  Doebeli,  M.  and  Knowlton,  N.  Variable  investment,  the  continuous  prisoner’s

dilemma, and the origin of cooperation. Proc. R. Soc. Lond. B 266, 1723–1728 (1999) .
7. Doebeli, M. and Knowlton, N. The evolution of interspecific mutualisms, Proc. Natl. Acad. Sci. USA

95, 8676–8680 (1998). 
8. Hauert, Christoph and Doebeli, Michael, Spatial structure often inhibits the evolution of cooperation

in the snowdrift game, Nature 428, 643-646 (2004).
9. Wilkinson,  G.  S.  and  Shank,  C.  C.  Rutting-fight  mortality  among musk  oxen  on  banks  island,

Northwest Territories, Canada. Anim. Behav. 24, 756–758 (1977). 
10. Clutton-Brock, T. H. et al. Selfish sentinels in cooperative mammals. Science 284, 1640–1644 (1999). 

Turner, P. E. and Chao, L. Escape from prisoner’s dilemma in RNA phage Φ6. Am. Nat. 161, 497–505
(2003).  

11. Nowak, Martin A., Sasaki, Akira, Taylor, Christine and Fudenberg, Drew, Emergence of cooperation
and evolutionary stability in finite populations, Nature 428, 646-650 (2004).

12. Watts, D. J. and Strogatz S. H., Collective dynamics of ‘small-world’ networks, Nature 393, 440–442
(1998). 

13. Barabási, A. L., Albert, R., Emergence of scaling in random networks, Science 286, 509-512 (1999).
14. Barabási, A. L., Albert, R., Jeong, H. Mean-field theory for scale-free random networks, Physica A

272, 173-197 (1999).
15. Albert, R., Barabási, A. L. Statistical mechanics of complex networks, Reviews of Modern Physics 74,

47-97 (2002). 
16. Dorogotsev, S. N. and Mendes, J. F. F.,  Evolution of Networks: From Biological Nets to the Internet

and WWW  (Oxford University Press, Oxford, 2003).
17. Cohen, Reuven, and Havlin,  Shlomo,  Scale-Free Networks are Ultra-Small,  Phys.  Rev.  Lett.  90,

058701 (2003). 
18. Hofbauer, J.  and Sigmund, K.  Evolutionary Games and Population Dynamics (Cambridge Univ.

Press, Cambridge, UK, 1998).
19. Santos, F.C., Pacheco, J. M., Scale-Free Graphs provide a Unifying Framework for the Emergence of

Cooperation,  (submitted).


