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Abstract

Real-world networks of contacts have been shown to be het-
erogeneous concerning their patterns of interactions. This
feature contrasts with the traditional homogeneous ansatz
made when studying the evolution of cooperation employing
well-known social-dilemmas in the framework of evolution-
ary game theory, in which cooperation may be undermined by
Fear and Greed. Here we show that an entirely new picture
emerges whenever the pattern of interaction in populations
exhibits scale-free behaviour, such that long-term collective-
beneficial behaviour easily resists short-term, self-regarding,
individual behaviour. We show that Fear is more detrimen-
tal to cooperation than Greed, which ceases to be a threat in
strongly heterogeneous populations. Furthermore, we show
how the introduction of age correlations between individuals
helps promoting cooperative behaviour. The picture emerg-
ing from our study shows that in a world in where cooperation
is determined by a balance between greed and fear, coopera-
tion constitutes a viable trait to the extent that the threat posed
by fear is minor.

Introduction
Cooperation has played a key role throughout evolution
(Sigmund, 1993), being present at all biological scales, from
simple organisms, which have cooperated to produce more
complex organisms during evolutionary history (Smith and
Szathmàry, 1995; Michod, 1999), all the way up to verte-
brates (Hammerstein, 2003). However, and in spite of its rel-
evance and abundance, cooperation remains an evolutionary
conundrum (Hammerstein, 2003). The problem has been
conveniently formulated in the framework of evolutionary
game theory which, when combined with games such as the
Prisoner’s Dilemma (PD), used as a metaphor for studying
cooperation between unrelated individuals, enables one to
investigate how collective cooperative behaviour may sur-
vive in a world where individual selfish actions produce bet-
ter short-term results. Analytical solutions for this problem
have been obtained whenever populations are assumed in-
finite and their interactions homogeneous. Under these as-
sumptions, cooperation is not an evolutionary competitive
trait, which is at odds with empirical observation. Such an
unfavourable scenario for cooperation in the PD, as well as

the wish to contemplate other possible cooperative scenar-
ios has led to the adoption of other games (Heinsohn and
Parker, 1995; Clutton-Brock, 2002), such as the Snowdrift-
Game (SG) (also known as Hawk-Dove or Chicken, more
favourable to cooperation) or the Stag-Hunt game (SH) (a
coordination-type game favouring cooperation) as well as
numerical simulations in finite, often spatially extended,
populations (Nowak and May, 1992) (Figure 1-a), which
nonetheless retain a homogeneous pattern of connectivity.

Recently, however, compelling evidence has been accu-
mulated that a plethora of natural, social and technological
real-world networks of contacts (NoC) between individuals
are heterogeneous, different individuals engaging in differ-
ent patterns of interactions, exhibiting scale-free behaviour
in the most extreme case (Amaral et al., 2000; Albert and
Barabási, 2002; Dorogotsev and Mendes, 2003; Vespignani
and Pastor-Satorras, 2004) (Figure 1-b). Here we examine
how cooperation evolves whenever individuals interact fol-
lowing heterogeneous, scale-free NoC, engaging in single
rounds of a social dilemma characterized by given intensi-
ties of greed and fear. Because no analytic solutions exist
for this problem, agent-based simulations (Macy and Flach,
2002; Riolo et al., 2001) provide a viable alternative to study
the evolution of cooperation in these more realistic popula-
tion structures, a framework we shall adopt here, with details
provided below. We shall conveniently map a given popula-
tion onto a graph, in which individuals (agents) occupy the
vertices and their patterns of interactions are defined by the
edges linking the vertices (Pacheco and Santos, 2005; San-
tos and Pacheco, 2005).

It is noteworthy that biologically and sociologically
(Bonabeau et al., 1999) inspired models have been on the
basis of several studies of the emergence of cooperation,
both in the framework of artificial intelligence (Kraus, 1997)
and Artificial Life research (Akiyama and Kunihiko, 1995).
Nonetheless, the inherent complexity of the problem leads to
artificial individual agents which, instead of embodying an
intrinsically adaptive structure, often exhibit a pre-defined
(and complex) set of rules which are used to establish co-
operation. Here we undertake a different approach, in which
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Figure 1: Heterogeneous versus Homogeneous NoC. a)
Scale-free graph, built following the Barabási-Albert model.
The thick black edges illustrate the direct ties which link the
most connected individuals. b) Homogeneous regular graph,
in which every individual is equivalent to any other, exhibit-
ing a degree distribution characterized by a single peak. The
limit z = N − 1 leads to a complete graph. Histograms :
Degree distributions, computed for each type of graph and
N = 104. In both cases the average connectivity z is 4. The
colouring of vertices illustrates one possible realization at
the start of a simulation, in which 50

individual agents are devoid of any complexity, capable only
of adopting a (binary) strategy. However, the individual
strategy is allowed to evolve and, therefore, to adapt to the
context in which such a simple agent is immersed which, as
will be shown, may lead to surprisingly cooperative scenar-
ios, whenever the adaptive co-evolution of these strategies
takes place in populations with a structure exhibiting con-
text preservation.

This article is structured as follows. First, we discuss
how the different social dilemmas are defined wherein the
emergence of cooperation will be investigated. The next
section describes how the simulations were constructed fo-
cussing on the graph generation mechanism, the stochastic
evolutionary dynamics adopted and the parameter settings.
Finally the results for all dilemmas in the well-mixed and

scale-free scenarios are described and compared in a discus-
sion section.

Defining the Space of Social Dilemmas.
At the most elementary level, social dilemmas can be for-
malized in terms of symmetric two-person games based on
two choices - to cooperate (C) or to defect (D). These two
choices lead to four possible outcomes: CC, CD, DC and
DD. With each outcome, a particular payoff is associated: R
(reward) and P (punishment) are the payoffs for mutual co-
operation (CC) and defection (DD), respectively, whereas S
(sucker) and T (temptation) are the payoffs associated with
cooperation by one player and defection by the other, re-
spectively. Several social dilemmas (Macy and Flach, 2002)
arise naturally, depending on the relative ordering of these
four payoffs, obeying the following constraints:

i) R > P: players prefer mutual cooperation (CC) over mu-
tual defection (DD).

ii) R > S: players prefer mutual cooperation over unilateral
cooperation (CD).

iii) T > R: players prefer unilateral defection (DC) to mu-
tual cooperation or P > S: players prefer mutual defection
to unilateral cooperation (CD).

Dilemmas will exhibit different degrees of tension be-
tween individual and collective interests, based on the above
relations. Given that R > P, tension becomes apparent when
the preferred choices of each player lead to individual ac-
tions resulting in mutual defection, in spite of the fact that
mutual cooperation is more beneficial. The extent to which
such individual actions occur may be adjusted introducing
different intensities of greed (the temptation to cheat, when-
ever T > R), of fear (of being cheated, whenever P > S) or
both, leading to three well-known social-dilemma games:

• The Snowdrift game SG game, for which T > R > S > P,
where tension is due to greed but not fear,

• the game of Stag Hunt (SH), for which R > T > P > S,
where tension results from fear but not greed, and

• the PD game, in which both fear and greed are present,
that is, T > R > P > S.

Formally, these dilemmas span a four-dimensional param-
eter space. We simplify the problem by normalizing the ad-
vantage of mutual cooperation over mutual defection, in all
games, to the same base value, making R = 1 and P = 0.
With this choice for R and P, we are left with two parame-
ters, T and S. Depending on their values, these parameters
may add (or not) different intensities of greed, fear or both
to each game.

We study the behaviour of all dilemmas in the ranges
0 ≤ T ≤ 2 and −1 ≤ S ≤ 1, which will be shown to be



sufficient to characterize the games under study, fear be-
ing present whenever S < 0 while greed is present whenever
T > 1

Modelling Evolutionary Dynamics in
Structured Populations.

Games on Graphs
In the language of graph theory, well-mixed populations of
size N are represented by complete graphs, which corre-
spond to a regular, homogeneous graph with average con-
nectivity z = N−1, since all vertices share the same number
of connections. Indeed, all homogeneous graphs exhibit the
same shape for the degree distribution d(k), defined for a
graph with N vertices as d(k) = Nk/N, where Nk gives the
number of vertices with k edges (Figure 1), reflecting the
topological equivalence of all vertices.

Real-world NoC, on the other and, are clearly heteroge-
neous, corresponding to populations in which different indi-
viduals exhibit distinct patterns of connectivity, portraying
the coexistence of local connections (spatial structure) with
non-local connections (or shortcuts) and often exhibiting a
power-law dependence of their degree distributions (Ama-
ral et al., 2000; Albert and Barabási, 2002; Dorogotsev and
Mendes, 2003). The Barabási-Albert (Barabási and Albert,
1999) model provides the best-known model leading to dis-
tributions d(k)∼ k−γ, with γ = 3 (Figure 1-b). The construc-
tion of a scale-free graph using the Barabási-Albert model
involves two processes:

1. Growth: Starting with a small number (m0) of vertices, at
every time step we add a new vertex with m = m0 edges
that link the new vertex to m different vertices already
present in the system;

2. Preferential attachment: When choosing the vertices to
which the new vertex connects, we assume that the prob-
ability pi that a new vertex will be connected to vertex i
depends on the degree ki of vertex i: pi = ki/

∑
ki .

Preferential attachment corresponds to the well-known rich
get richer effect in economics (Simon, 1955), also known
as the Matthew effect in sociology (Merton, 1968). After t
time steps this algorithm produces a graph with N = t + m0
vertices and mt edges.

Because vertices appear at different moments in graph-
generation time, so-called age-correlations (Albert and
Barabási, 2002; Dorogotsev and Mendes, 2003) arise. In
order to single out the role of heterogeneity in evolution, we
may remove any correlations (including age-correlations) by
subsequently exchanging, randomly and repeatedly, the ends
of pairs of edges of the original graph (Maslov and Snep-
pen, 2002), a procedure which washes out correlations with-
out changing the scale-free degree-distribution (Maslov and
Sneppen, 2002).
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Figure 2: Evolution of cooperation in well-mixed NoC. Re-
sults for the fraction of cooperators in the population is plot-
ted as a contour, drawn as a function of the intensity of
greed and fear which characterizes a given dilemma. In the
absence of greed and fear (lower right square) cooperators
trivially dominate. Fear without greed leads to the SH game
(lower left square), greed without fear leads to the SG (up-
per right square), and when both fear and greed are present
we obtain the PD game (upper left square). Results were
obtained in complete NoC, the finite population analog of
infinite well-mixed populations. These results provide the
reference scenario with which the role of population struc-
ture will be assessed (see Figure 3).

Stochastic Evolutionary Dynamics
For R = 1, P = 0, 0 ≤ T ≤ 2 and −1 ≤ S ≤ 1, evolution
is carried out implementing the finite population analogue
of replicator dynamics (Gintis, 2002; Hauert and Doebeli,
2004), to which simulation results converge in the limit of
homogeneous, well-mixed populations. This corresponds to
define the following transition probabilities: In each gen-
eration, all pairs of individuals x and y, directly connected,
engage in a single round of the game, their accumulated pay-
off being stored as Px and Py, respectively. Whenever a site
x is updated, a neighbour y is drawn at random among all kx
neighbours; then, only if Py > Px the chosen neighbour takes
over site x with probability given by

(Py−Px)
[k>D>]

, (1)
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Figure 3: Evolution of cooperation in scale-free NoC. We use the same notation and scale as Figure 2. Left: Random scale-free
NoC. The interplay between small-world effects and heterogeneity effects, discussed in the main text, leads to a net overall
increase of cooperation for all dilemmas. Right: Barabási-Albert scale-free NoC. Whenever age-correlations are retained,
highly-connected individuals become naturally inter-connected and cooperators dominate defectors for all intensities of greed,
enlarging the range of intensities for which they successfully survive defectors under the action of fear.

where k> = max(kx,ky) and D> = max(T,R,S,P) −
min(T,R,S,P).

Simulation Settings
Simulations were carried out on graphs with N = 103 ver-
tices and average connectivity z=4 (except in connection
with Figure 2, where where z = N − 1). Equilibrium fre-
quencies of cooperators and defectors were obtained, for
each value of T and S, by averaging over 1000 generations
after a transient time of 10000 generations (we confirmed
that averaging over larger periods or using different transient
times did not change the results). Furthermore, final data re-
sults from averaging over 100 realizations of the same type
of NoC specified by the appropriate parameters (N and z).
All simulations start with an equal percentage of strategies
(cooperators and defectors) randomly distributed among the
elements of the population. Moreover, even when graphs
are generated stochastically, the evolution of cooperation is
studied in full grown graphs, that is, the number of vertices
and edges is conserved throughout evolution.

Results and Discussion
Figure 2 shows the results of our simulations for all social
dilemmas as a contour plot. The underlying NoC correspond

to complete, fully connected graphs, which provide the fi-
nite population analogue to the infinite, well-mixed limit
well-known from the standard analytical treatment (Weibull,
1997). In particular, the results confirm the

i) dramatic fate of cooperators under the simultaneous
threat of greed and fear (PD);

ii) a similar fate for cooperators in the absence of greed
(SH) whenever fear exceeds the advantage of mutual co-
operation over temptation to defect.

iii) the coexistence of cooperators and defectors in the ab-
sence of fear, such that cooperators increasingly dominate
the lower the intensity of greed (SG).

Replacing the well-mixed ansatz for the population by a het-
erogeneous population exhibiting a scale-free degree dis-
tribution such that all connections between individuals are
purely random (see previous sections), leads to the results
shown in Figure 3-a.

The results in Figure 3-a evidence the determinant role
played by population structure on the evolution of coopera-
tion for all dilemmas.

Using Figure 2 as reference we observe that, overall,
scale-free NoC efficiently neutralize the detrimental role of



greed in the evolution of cooperation, whereas fear remains
a strong deterrent of cooperation. Indeed, under greed alone
(SG) cooperators dominate for all values of greed. Under
fear alone (SH) cooperation becomes now more likely for
small intensities of fear. For the PD the domain of coex-
istence between cooperators and defectors is clearly broad-
ened. Moreover, the small slope of the borderline between
cooperators and defectors provides further evidence that fear
constitutes the major threat to cooperation.

The net results shown in Figure 3-a hide in fact a detailed
interplay of two mechanisms, related to the small-world
and heterogeneous nature of the underlying scale-free NoC:
The occurrence of many long-range connections (so-called
shortcuts) in scale-free graphs precludes the formation of
compact clusters of cooperators, thereby facilitating inva-
sion by defectors. However, the increase in heterogeneity of
the NoC opens a new route for cooperation to emerge, since
now different individuals interact different number of times
per generation, which enables cooperators to outperform de-
fectors. In other words, while on one hand the increased dif-
ficulty in aggregating clusters of cooperators would partially
hamper cooperation, heterogeneity, on the other hand, coun-
teracts this effect, with a net increase of cooperation (Santos
et al., 2005).

The scale-free NoC of Barabási and Albert (Barabási and
Albert, 1999) help us demonstrate how one may go be-
yond the scale-free properties of given NoC with the pur-
pose of increasing cooperation. Indeed, if we do not ran-
domize the pattern of connectivity between individuals, such
that the NoC exhibit the correlations arising naturally in the
Barabási and Albert model, a different result emerges for
the evolution of cooperation, as shown in Figure 3-b). As is
well-known, this model exhibits so-called age-correlations,
in which the older vertices not only become the ones acquir-
ing highest connectivity, but also they become naturally in-
terconnected with each other. In other words, the formation
of compact clusters of cooperators which was inhibited by
the occurrence of many shortcuts in random scale free NoC,
will be partly regained in such NoC, mostly for the few in-
dividuals which exhibit high connectivity. Of course, such
a clustering of cooperators will only occur to the extent that
cooperators are able to occupy such highly connected sites,
which indeed happens.

The results in Figure 3-b) show that now greed poses no
threat to cooperation, defectors being wiped out from popu-
lations under greed alone (SG). Under fear alone (SH), co-
operators now wipe out defectors where before (Figure 3-a)
they managed to coexist. Under the joint threat of greed
and fear (PD), cooperators also get a strong foot-hold up to
larger intensities of fear.

The present results show that inclusion of realistic popu-
lation structure in evolutionary game theory restores coop-
eration as a competitive evolutionary trait, being more com-
petitive the more heterogeneous the pattern of interactions

of a given population.
Furthermore, re-formulating three well-known dilemmas

in terms of the relative intensities of greed and fear allows
a unified analysis of all dilemmas, showing the relative im-
portance of greed and fear as deterrents of cooperation. Fi-
nally, by understanding the mechanisms which ensure the
sustainability of cooperation, it is possible to conceive spe-
cific interaction patterns with the purpose of promoting co-
operation. At any rate, fear is a much stronger deterrent of
cooperation than greed, a feature which is well-supported
by empirical evidence on many biological species, includ-
ing humans.
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