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cCentro de Fı́sica Teórica e Computacional, Departamento de Fı́sica da Faculdade de Ciências, P-1649-003 Lisboa Codex, Portugal

Received 7 June 2006; received in revised form 4 August 2006; accepted 9 August 2006

Available online 12 August 2006
Abstract

We study stochastic evolutionary game dynamics in populations of finite size. Moreover, each individual has a randomly distributed

number of interactions with other individuals. Therefore, the payoff of two individuals using the same strategy can be different. The

resulting ‘‘payoff stochasticity’’ reduces the intensity of selection and therefore increases the temperature of selection. A simple mean-

field approximation is derived that captures the average effect of the payoff stochasticity. Correction terms to the mean-field theory are

computed and discussed.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Traditional evolutionary game theory has been formu-
lated for infinitely large populations, where stochastic
effects can be neglected. The relative abundances of
different strategies in a population change according to
deterministic differential equations (Taylor and Jonker,
1978; Hofbauer et al., 1979; Maynard Smith, 1982; Weibull,
1995; Samuelson, 1997; Hofbauer and Sigmund, 1998,
2003; Fudenberg and Tirole, 1998; Gintis, 2000; Cressman,
2003; Nowak and Sigmund, 2004). Due to their nonlinear-
ity, such equations can show very complex dynamics.

Game dynamics in finite populations require a stochastic
approach (Schaffer, 1988; Ficci and Pollack, 2000; Fogel
et al., 1998; Nowak et al., 2004; Taylor et al., 2004; Antal
and Scheuring, 2005; Imhof et al., 2005; Traulsen et al.,
2005; Nowak, 2006; Fudenberg et al., 2006). In finite
populations, the traditional concept of an evolutionarily
stable strategy (ESS) is no longer decisive and instead one
has to calculate fixation probabilities in order to determine
if a given resident strategy is protected by natural selection
(Nowak et al., 2004; Traulsen et al., 2006b).
e front matter r 2006 Elsevier Ltd. All rights reserved.
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In most approaches, there is still the simplifying
assumption that each individual interacts with each other
individual in the population and therefore the payoff is
determined by a deterministic process. Here, we relax this
assumption and introduce a new system in which different
individuals have a different numbers of interactions.
Hence, two individuals of the same type can obtain
different payoffs, leading to a heterogeneity in the system.
Instead of sharp payoff values, there is a distribution of
payoffs for the same type of individuals. While the
analytical solution of this system is no longer possible,
we can derive approximations that agree well with
(numerically exact) individual-based simulations of the
process.
This approach is related to formulations of the evolu-

tionary dynamics on networks, in which every individual
interacts only with a small subset of the population
(Nowak and May, 1992; Ellison, 1993; Blume, 1993; Herz,
1994; Brauchli et al., 1999; Abramson and Kuperman,
2001; Szabó and Hauert, 2002; Ebel and Bornholdt, 2002;
Hauert and Doebeli, 2004; Santos and Pacheco, 2005;
Lieberman et al., 2005; Santos et al., 2006; Ohtsuki et al.,
2006; Ohtsuki and Nowak, 2006). However, in these
studies the interaction network is usually fixed during
the evolutionary game. Our approach corresponds to a
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random interaction network that changes after each update
step (Bala and Goyal, 2001; Skyrms and Pemantle, 2000;
Pacheco et al., 2006).

2. Evolutionary dynamics in finite populations

In evolutionary game dynamics, individuals obtain a
fitness associated with the payoff from a game. Let us
consider the following evolutionary process: two indivi-
duals 1 and 2 with payoffs p1 and p2, respectively, are
chosen at random. Their payoff difference p12 ¼ p1 � p2 is
computed. The first individual changes to the strategy of
the second individual with probability

p ¼
1

1þ exp½þbp12�
. (1)

We chose the Fermi function from statistical physics for p

as proposed by Blume (1993), Szabó and T +oke (1998) and
Traulsen et al. (2006a). With probability 1� p, individual 2
changes to the strategy of individual 1. The parameter b
measures the intensity of selection. For b51, selection is
weak and the payoffs are only a small perturbation of
random drift. For bb1, selection is strong and the
individual with the lower payoff will change its strategy.
In statistical physics, b is the inverse temperature: for
b! 0, the dynamics of the system is dominated by
stochasticity (the temperature of selection is high), whereas
in the limit b!1 stochastic effects can be neglected (the
temperature of selection is zero).

In a finite population of size N with two types A and B,
A individuals can interact either with other A individuals
and obtain a payoff a or with B individuals, which leads to
a payoff b. Similarly, the interaction of B individuals with
A individuals leads to a payoff c, whereas they get d from
interacting with B individuals. This is captured by the
payoff matrix

A B

A

B

a b

c d

� �
:

(2)

If every individual interacts with every other individual,
each A individual obtains the same average payoff

pA ¼
aði � 1Þ þ bðN � iÞ

N � 1
. (3)

Here i is the number of A individuals and N � i is the
number of B individuals. Self-interactions have been
excluded. Similarly, the payoff of each B individual is

pB ¼
ci þ dðN � i � 1Þ

N � 1
. (4)

From these payoffs, the transition probabilities to change
the number of i individuals to i � 1 can be calculated as

T�ðiÞ ¼
i

N

N � i

N

1

1þ e�bðpA�pBÞ
. (5)
Based on these probabilities, a closed equation for the
probability that a group of i mutants of type A reaches
fixation in a population of N individuals can be derived
(Traulsen et al., 2006a,c).
However, the idea that every individual of a certain type

has the same fitness is a simplification. Individuals may
have different numbers of interactions. The simplest means
to model such effects is to introduce a probability q that an
interaction occurs between any two individuals. For q ¼ 1,
we recover the standard theory outlined above. For qo1,
heterogeneity is introduced in the system as individuals of
the same type can now have different payoffs. When q ¼ 0
every individual has payoff zero and the system becomes
homogeneous again. This, in turn, is equivalent to the limit
b ¼ 0 (neutral selection). Consequently, we expect qo1 to
lead to an average weakening of the intensity of selection in
the population, and, therefore, to an increase in the
temperature of selection.

3. Analytical results for stochastic payoff evaluation

3.1. Stochastic transition probabilities

The exact fixation probabilities of the system with
0oqo1 cannot be calculated in a simple way, as the
transition probabilities of Eq. (5) are now random
numbers. However, we can calculate the average prob-
ability that the number of A individuals increases or
decreases by one. The number of interactions that an A

individual has with other A individuals is a binomial
distributed random number. We use jAA for the number of
interactions of an A individual with other A individuals
and jAB for its interactions with B individuals. Similarly, a
B individual has jBA interactions with A individuals and jBB

interactions with others of type B. If the population
consists of i A individuals, the probability that a focal A

individual interacts with exactly jAA of them is

PðjAAÞ ¼
i � 1

jAA

 !
qjAA ð1� qÞi�1�jAA . (6)

The minimum number of these interactions is 0 and the
maximum number is i � 1. Similarly, the number of A

interactions with B individuals is a number between 0 and
N � i. For B individuals, similar equations hold. The
average payoff of an A individual is now

~pA ¼
Xi�1

jAA¼0

XN�i

jAB¼0

i � 1

jAA

 !
qjAA ð1� qÞi�1�jAA

�
N � i

jAB

 !
qjAB ð1� qÞN�i�jAB

� a
jAA

N � 1
þ b

jAB

N � 1

� �

¼ q a
i � 1

N � 1
þ b

N � i

N � 1

� �
. ð7Þ
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Fig. 1. Fixation probability of k ¼ 15 cooperators in a Prisoner’s

Dilemma for different interaction probability q and different intensities

of selection b. Symbols are computer simulations of the process. Full lines

represent the mean-field approximation Eq. (13), whereas dashed lines are

the fixation probabilities computed with the approximated transition

probabilities given by Eq. (9). For small b, the mean-field approximation

agrees well with simulation results. Only for very high b, the fixation

probabilities of the mean-field approximation no longer agree with

simulations and the more sophisticated theory based on Eq. (9) has to be

applied (parameters: N ¼ 20, payoff matrix a ¼ 0:9, b ¼ �0:1, c ¼ 1:0,
d ¼ 0:0, averages over 106 realizations of the process).
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Similarly, for B individuals we obtain

~pB ¼ q c
i

N � 1
þ d

N � i � 1

N � 1

� �
. (8)

The payoff values enter in the transition probabilities in
a nonlinear way and the reasoning for the transition
probabilities is more intricate. The average transition
probabilities can be calculated as

hT�ðiÞi ¼
i

N

N � i

N

X
jAA

X
jAB

X
jBA

X
jBB

PðjAAÞ

�PðjABÞPðjBAÞPðjBBÞ
1

1þ e�bðpA�pBÞ
.

Since jAA, jAB, jBA, and jBB are random numbers with a
binomial distribution, we obtain

hT�ðiÞi ¼
i

N

N � i

N

Xi�1
jAA¼0

XN�i

jAB¼0

Xi

jBA¼0

XN�i�1

jBB¼0

i � 1

jAA

 !

�qjAA ð1� qÞi�1�jAA

N � i

jAB

 !
qjABð1� qÞN�i�jAB

�
i

jBA

 !
qjBA ð1� qÞi�jBA

�
N � i � 1

jBB

 !
qjBB ð1� qÞN�i�1�jBB

�
1

1þ e�bðajAAþbjAB�cjBA�djBBÞ=ðN�1Þ
. ð9Þ

Note that for q ¼ 0 and 1, these expressions vastly simplify.
For q ¼ 0 we have T�ðiÞ ¼ 1

2
i

N
N�i

N
and for q ¼ 1 we recover

the conventional Eq. (5).
Eq. (9) makes the simplifying assumption that the

interactions of player A and B are independent. However,
if A and B interact with each other, then jAB and jBA are no
longer independent. This particular interaction occurs
for each player with probability q. Therefore, the
probability that one of them interacts with the other one,
but not vice versa, is 2qð1� qÞ, having a maximum at
q ¼ 0:5. The contribution of every interaction to the overall
payoff of an individual is of the order of 1=N. Hence,
asymmetric interactions lead to an error of the order of
2qð1� qÞ=N, vanishing rapidly with N. Exact computer
simulations for the process, with and without such
asymmetric interactions lead to fixation probabilities which
are indistinguishable, for population sizes as small as
N ¼ 20, and therefore still agree perfectly with our
analytical approximation. A formulation of Eq. (9) which
accurately describes the symmetry in the interactions is
discussed in Appendix A.

From the average transition probabilities, the probabil-
ity that k individuals reach fixation can be approximated as

fk ¼

Pk�1
i¼0

Qi
j¼1hT

�ðjÞi=hTþðjÞiPN�1
i¼0

Qi
j¼1hT

�ðjÞi=hTþðjÞi
. (10)
The fixation probabilities calculated in this way are
in excellent agreement with simulations, as shown in
Figs. 1–3.
Unfortunately, the four sums in the transition prob-

ability make it inconvenient to work with Eq. (10): the
computation of a single transition probability for a
population of size N ¼ 20 requires the summation of more
than 105 terms. Therefore, it is useful to derive an
approximation for these probabilities.
3.2. Mean-field approximation

Following a long tradition in physics, we calculate the
payoffs in the mean-field approximation. This means that,
instead of averaging the transition probabilities, as in
Eq. (9), we average the payoff for individuals of a given
type. In other words, we neglect fluctuations in the payoffs.
Their average values read ~pA ¼ qpA and ~pB ¼ qpB, see
above. Eq. (5) changes to

~T
�
ðiÞ ¼

i

N

N � i

N

1

1þ e�bqðpA�pBÞ
. (11)

The only thing that changes from the original system with
transition probabilities given by Eq. (5) is the intensity of
selection, which is reduced to beff ¼ qb. In statistical
physics, this corresponds to an increase of the temperature,
Teff ¼ 1=beff ¼ T=q4T . Hence, the heterogeneity intro-
duced in the system simply increases the temperature of
selection. In Traulsen et al., (2006a, c) we have shown that
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Fig. 2. Fixation probability of k ¼ 5 A individuals in a Coordination

game for different interaction probability q and different intensities of

selection b. Computer simulations (symbols) agree perfectly with the

fixation probabilities computed from the transition probabilities of Eq. (9)

shown as dashed lines. Full lines show the mean-field approximation of

Eq. (12) that is in perfect agreement with simulations for b ¼ 0:1 and 1:0
(parameters: N ¼ 20, payoff matrix a ¼ 1, b ¼ 0:2, c ¼ 0:8, d ¼ 0:3,
averages over 106 realizations of the process).
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Fig. 3. Fixation probability of k ¼ 15 A individuals in a Coordination

game for different interaction probability q and different intensities of

selection b. Computer simulations (symbols) agree perfectly with the

fixation probabilities computed from the transition probabilities Eq. (9)

shown as dashed lines. Full lines show the mean-field approximation

Eq. (12) that is in perfect agreement with simulations for b ¼ 0:1 and 1:0
(parameters: N ¼ 20, payoff matrix as in Fig. 2, a ¼ 1, b ¼ 0:2, c ¼ 0:8,
d ¼ 0:3, averages over 106 realizations of the process).
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the fixation probability of such systems, i.e. the probability
that a group of k individuals of type A reaches fixation can
be well approximated by

fk ¼
erf ½xk� � erf ½x0�
erf ½xN � � erf ½x0�

. (12)

Here xk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
beff ðN�1Þ

u

q
ðkuþ vÞ, 2u ¼ a� b� cþ da0, 2v ¼

�aþ bN � dN þ d and erfðxÞ is the error function. For
u ¼ 0, the fixation probabilities reduce to

fk ¼
e�2beff ðN�1Þvk � 1

e�2beff ðN�1ÞvN � 1
. (13)

These expressions allow the calculation of the fixation
probabilities using the mean-field approximation. For
weak selection, b51, the mean-field approximation agrees
well with simulations, see Fig. 1. However, for very high
values of b, fluctuations in the payoff values can no longer
be neglected and the fixation probabilities have to be
calculated in a more sophisticated way via Eqs. (9) and (10)
where the averaging is considered at the level of transition
probabilities instead of being done already at the level of
payoffs. Note that in the whole parameter range of the
frequency-dependent Moran process (Nowak et al., 2004),
the mean-field approximation agrees well with computer
simulations. As a further approximation, corrections to the
mean-field theory can be calculated by developing the
transition probabilities around the mean-field theory, as
shown in Appendix B.
4. Individual-based simulations

To confirm our analytical results and to explore the
range in which the mean-field approximation works well,
we performed individual-based simulations of the process
in a population of two different types A and B. We select
two individuals 1 and 2 at random. Both interact with each
of the remaining N � 1 individuals in an evolutionary
game, where the probability for each interaction is q,
leading to payoffs p1 and p2. Since only these two
individuals are involved in the strategy update, the
remaining payoffs do not have to be computed. For the
particular interaction between 1 and 2, the symmetry of
interactions has to be taken into account. This interaction
takes place if either one of them wants to interact. Hence,
the payoff values of the two individuals are not indepen-
dent of each other. After computing the payoffs, individual
1 switches its strategy to the strategy of individual 2 with
probability p given by Eq. (1). Similarly, 2 switches to 1
with probability 1� p. Hence, the number of A individuals
can change by at most one in each time step. In this
process, we compute the probability that A individuals
reach fixation and wipe out B individuals.
In Fig. 1, we show simulations of a Prisoner’s Dilemma

starting with k ¼ 15 cooperators. Since cooperation is
dominated by defection, stronger selection decreases the
fixation probability of cooperators. For b ¼ 0:1 and 1, the
mean-field approximation agrees very well with individual-
based simulations. When selection is very strong, fluctua-
tions in the payoffs that increase the odds for cooperators
can no longer be neglected and the mean-field approxima-
tion is no longer valid. Using instead the fixation
probabilities of Eq. (10) derived from the averaged
transition probabilities of Eq. (9) leads to perfect agree-
ment again.
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Fig. 4. Conditional average time to end up in the state with 100%

cooperators in a Prisoners Dilemma, starting from k ¼ 15 cooperators, for

different interaction probability q. For q ¼ 0, we recover the result from

neutral selection for any value of b. For small b, numerical simulations

(symbols) agree perfectly with the mean-field theory for all values of q,

Eq. (14) depicted by full lines. Deviations become larger when selection is

stronger (payoff matrix as in Fig 1, a ¼ 0:9, b ¼ �0:1, c ¼ 1:0, d ¼ 0).
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As a second example, we show the fixation probabilities
in a coordination game starting from k ¼ 5 individuals of
type A in Fig 2 and k ¼ 15 in Fig. 3. Again, the simulations
agree perfectly with the fixation probabilities from the
mean-field approximation given Eq. (12) for b ¼ 0:1 and 1.
For higher intensity of selection, the mean-field approx-
imation deviates from the fixation probabilities derived
from the averaged transition probabilities Eq. (9), which
are in good agreement with individual-based simulations.
Here, we have restricted ourselves to a coordination game
in which all payoffs are positive, i.e. interacting is always
better than not interacting. The situation can become more
complex if not playing can be advantageous as in Hauert et
al. (2002b,a) and Szabó and Hauert (2002).

5. Fixation times

So far, we have only considered the fixation probabilities
that the system will reach a given absorbing state. Often,
the duration of this process is also of interest, i.e. the
average time it takes until fixation. As for the fixation
probabilities, we can make an approximation for the
fixation times by replacing the payoffs by the average
payoffs in the case of qo1. This approximation corre-
sponds to a rescaling of the temperature by a factor q in the
equation for the fixation times. Antal and Scheuring (2005)
and Traulsen et al. (2006c) have shown that the conditional
average time tN

i to reach state N with A individuals only is
for q ¼ 1 given by

tN
i ¼

1

fi

ðR0 � RiÞ � R0. (14)

The quantity Ri is defined as

Ri ¼ N2
XN�1

n¼iþ1

w1�n
n

XN�1
k¼n

fk

1þ w�12k

kðN � kÞ
wk

kþ1, (15)

where wj ¼ exp½qbðjuþ 2vÞ=ðN � 1Þ�. Fig. 4 shows a com-
parison of the fixation times obtained from Eq. (14) and
numerical simulations, which agree very well for small b.
The remarkable agreement with the mean-field approxima-
tion shows again that the stochastic payoff evaluation can
be mapped to a higher temperature of selection. In other
words, the heterogeneity introduced by qo1 simply
weakens selection.

Here, we restricted ourselves to the conditional average
time it takes to reach the absorbing state where only
A individuals are present. Similar results based on the
theory for q ¼ 1 can be derived for the unconditional
fixation times or fixation in i ¼ 0 (Traulsen et al., 2006c).

6. Comparison with previous models

Sánchez and Cuesta (2005) have recently introduced a
model in which altruism may arise solely from individual
selection, see also Sánchez et al. (2005) and Roca et al.
(2006). In their model, agents reproduce after interactions
among randomly chosen individuals. A parameter s is
introduced which specifies the number of interactions
taking place in a population of size N between two
successive strategy updates, which in the limit s=Nb1 leads
to the usual assumption that all individuals interact with all
others. Similar to our interaction probability q, a small
number of interactions leads to strong fluctuations in the
system that may dominate the dynamics.
However, Sánchez and Cuesta (2005) choose a different

update mechanism for the evolutionary dynamics: they
choose deterministically the worst player and replace it by
a copy of the best player, keeping the payoff of the best
player. Hence, new agents are immediately equipped with
the same survival opportunities as their ancestors, which
makes it difficult to compare their results with our model.
Employing a fixed number of interactions s between
successive updates leads to results comparable to our
model if a background fitness is introduced (Roca et al.,
2006): for s5N, stochastic effects dominate and selection is
weak. For sbN, selection is strong and more successful
strategies will spread.

7. Discussion

We have added an additional source of stochasticity to
evolutionary game dynamics of finite populations. The
payoff of each individual is no longer deterministically
given, but evaluated in a stochastic process. For each pair
of individuals there is a probability q that an interaction
will occur. Hence, individuals using the same strategy can
differ in their payoff values when selection operates. We
have used a pairwise comparison update rule where the
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parameter b acts like an inverse selection temperature
(Traulsen et al., 2006a).

The resulting system is complicated and can be studied
with individual-based computer simulations. We have
presented a simple mean-field approximation that gives a
good description of fixation probabilities and times for a
wide range of parameter values (as long as the intensity of
selection is not too strong). We have shown that the
heterogeneity arising from the stochastic payoff evaluation
increases the temperature of selection.
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Appendix A. Average transition probabilities for symmetric

interactions

In Eq. (9), we have assumed that jAB and jBA are
independent random numbers. For the particular interac-
tion between individuals A and B, this is not the case,
as A interacting with B leads to B interacting with A.
We have to distinguish two cases: with probability
q2 þ 2qð1� qÞ ¼ qð2� qÞ, the link between A and B is
active. With probability ð1� qÞ2, it is not active. Hence,
Eq. (9) modifies to

hT�ðiÞi ¼ qð2� qÞ
i

N

N � i

N

Xi�1
jAA¼0

XN�i�1

jAB¼0

Xi�1
jBA¼0

XN�i�1

jBB¼0

�
i � 1

jAA

 !
qjAA ð1� qÞi�1�jAA

�
N � i � 1

jAB

 !
qjAB ð1� qÞN�i�1�jAB

�
i � 1

jBA

 !
qjBA ð1� qÞi�1�jBA

�
N � i � 1

jBB

 !
qjBB ð1� qÞN�i�1�jBB

�
1

1þ e�bðajAAþbðjABþ1Þ�cðjBAþ1Þ�djBBÞ=ðN�1Þ

þ ð1� qÞ2
i

N

N � i

N

Xi�1
jAA¼0

XN�i�1

jAB¼0

Xi�1
jBA¼0

XN�i�1

jBB¼0

�
i � 1

jAA

 !
qjAA ð1� qÞi�1�jAA
�
N � i � 1

jAB

 !
qjAB ð1� qÞN�i�1�jAB

�
i � 1

jBA

 !
qjBA ð1� qÞi�1�jBA

�
N � i � 1

jBB

 !
qjBB ð1� qÞN�i�1�jBB

�
1

1þ e�bðajAAþbjAB�cjBA�d jBBÞ=ðN�1Þ
. ð16Þ

The first summand describes the situation in which
interaction between the focal individuals A and B takes
place and the remaining A2B interactions are chosen at
random. There are N � i � 1 remaining B interactions for
A and i � 1 remaining A interactions for B. The A2B

interaction that is present is taken into account in the
argument of the exponential function. The second sum-
mand describes the situation in which the focal individuals
do not interact. Again, the remaining links are chosen at
random.

Appendix B. Corrections to the mean-field theory

Here, we derive a closed formula as an approxima-
tion for the transition probabilities Eq. (9). We consider
corrections to the mean-field approximation. Defining

f ¼ exp½�bqðaði � 1Þ þ bðN � iÞ � ci � dðN � i � 1ÞÞ�,

(17)

we can write the mean-field transition probability as

~T
�
ðiÞ ¼

i

N

N � i

N

1

1þ f �1
. (18)

We can now rewrite

F ðzÞ ¼
1

1þ exp½�bðajAA þ bjAB � cjBA � djBBÞ�

¼
1

1þ fe�z , ð19Þ

where

z ¼ � b a
jAA � qði � 1Þ

N � 1
þ b

jAB � qðN � iÞ

N � 1

�

� c
jBA � qi

N � 1
� d

jBB � qðN � i � 1Þ

N � 1

�
ð20Þ

measures deviations from the mean-field theory. For q ¼ 0
and 1, we have z ¼ 0. Also for b51, the term z becomes
small. The development of F ðzÞ for z51 yields

F ðzÞ ¼ ~F þ ~F ~Gzþ ð ~F ~G2 � 1
2
~F ~GÞz2

þ ð ~F ~G3 � ~F ~G2 þ 1
6
~F ~GÞz3

¼ ~F þ ~F ð1� ~F Þzþ ~F ð1� ~F Þð1
2
� ~F Þz2

þ ~F ð1
6
� 7

6
~F þ 2 ~F 2 � ~F3Þz3, ð21Þ

where ~F ¼ 1=ð1þ f Þ and ~G ¼ f =ð1� f Þ ¼ 1� ~F .
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Let us now consider the effect of the sums in Eq. (9) on
the terms in Eq. (21). We use the abbreviation Ck for the
term of order zk in Eq. (21). The term independent of z

gives the mean-field result described above, C0 ¼ ~F .
The linear order term vanishes C1 when the sums are

performed, due to the symmetry of the Binomial distribu-
tion.

In the quadratic term C2, all cross terms are linear and
consequently vanish. Only the terms in a2ðjAA � qði � 1ÞÞ2

are nonzero (similarly for b, c, and d) and give basically the
variance of the distributions. Hence, the quadratic term is
given by

C2 ¼ ~F
Xi�1

jAA¼0

Xn�i

jAB¼0

Xi

jBA¼0

Xn�i�1

jBB¼0

i � 1

jAA

 !

�qjAA ð1� qÞi�1�jAA

N � i

jAB

 !
qjAB ð1� qÞN�i�jAB

�
i

jBA

 !
qjBA ð1� qÞi�jBA

�
N � i � 1

jBB

 !
qjBBð1� qÞN�i�1�jBB z2

¼ ~Fb2½a2ði � 1Þ þ b2
ðn� iÞ

þ c2i þ d2
ðn� i � 1Þ�qð1� qÞ. ð22Þ

This first correction term vanishes for q ¼ 0 and 1, as it
should.

The cubic term in z simplifies in a similar way to

C3 ¼ ~Fb3½a3ði � 1Þ þ b3
ðn� iÞ þ c3i

þ d3
ðn� i � 1Þ�qð1� 3qþ 2q2Þ. ð23Þ

For terms of higher order in z, the skewness of the
Binomial distribution enters and leads to a more compli-
cated structure.

The transition probabilities finally yield

TþðiÞ � ~T
þ
ðiÞ 1þ ð1� ~F Þ

1

2
� ~F

� �
C2

~F

�

þ
1

6
�

7

6
~F þ 2 ~F2 � ~F 3

� �
C3

~F

�
. ð24Þ

The second transition probability T�ðiÞ can be obtained by
changing the sign of b in Eq. (24). Inserting these terms in
Eq. (10) yields the fixation probabilities, which do not
longer reduce to a simple equation if higher order
corrections are taken into account. However, for high
temperature, b51, the mean-field term is sufficient, as C2 is
quadratic in b. For q ¼ 0 and 1, all correction terms
vanish, as the mean-field theory becomes exact in these
limits.
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