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Abstract

Recently, the frequency-dependent Moran process has been introduced in order to describe evolutionary game dynamics in finite

populations. Here, an alternative to this process is investigated that is based on pairwise comparison between two individuals. We follow

a long tradition in the physics community and introduce a temperature (of selection) to account for stochastic effects. We calculate the

fixation probabilities and fixation times for any symmetric 2� 2 game, for any intensity of selection and any initial number of mutants.

The temperature can be used to gauge continuously from neutral drift to the extreme selection intensity known as imitation dynamics.

For some payoff matrices the distribution of fixation times can become so broad that the average value is no longer very meaningful.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Evolutionary game theory (Maynard Smith, 1982;
Weibull, 1995; Hofbauer and Sigmund, 1998; Gintis,
2000; Cressman, 2003; Nowak and Sigmund, 2004; Nowak,
2006) has become a standard approach to describe the
evolutionary dynamics of a population consisting of
different types of interacting individuals under frequency-
dependent selection. In the traditional approach, one
assumes that individuals meet each other at random in
infinitely large, well-mixed populations. The replicator
dynamics describes how the abundance of strategic types in
a population changes based on their fitness, identified with
the payoff resulting from the game. In this deterministic
formulation, individuals with higher fitness increase in
abundance and ultimately, the system reaches a stable fixed
point in which the population may consist either of a single
type or of a mixture of different types (Taylor and Jonker,
1978; Hofbauer and Sigmund, 1998, 2003).
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Recently, it has been shown that the finiteness of
populations may lead to fundamental changes in this
picture due to stochastic effects (Nowak et al., 2004; Taylor
et al., 2004; Imhof et al., 2005; Imhof and Nowak, 2006).
The fitness, F, of an individual is proportional to that
individual’s payoff p:

F ¼ 1� wþ wp. (1)

The parameter w 2 ½0; 1� denotes the intensity of selection.
For w ¼ 1, fitness equals payoff. This scenario describes
‘‘strong selection’’. For w51, the payoff only provides a
small perturbation to the overall fitness of an individual, a
limit known as weak selection (Nowak et al., 2004). Weak
selection is an important concept for two reasons: (i) many
analytical results can only be obtained in the limit of weak
selection, but extend in good approximation to much larger
values of w. (ii) It is not unreasonable to assume that the
fitness of an individual is the consequence of many factors
(and games) but only a particular game is under
consideration here. This assumption naturally leads to
the ‘‘weak selection’’ scenario.
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In this framework disadvantageous mutants have a
small, yet non-zero probability to reach fixation in a finite
population. Conversely, it is not always certain that
advantageous mutants take over the entire population.
Both effects become more pronounced the weaker the
selection intensity, and the smaller the population size.
Indeed, whenever the degree of stochasticity is high, these
effects become important and lead to a new concept of
evolutionary stability (Nowak et al., 2004; Wild and
Taylor, 2004; Traulsen et al., 2006c).

Finite-size populations are an ever-present ingredient
in individual-based computer simulations which naturally
incorporate stochastic effects. Moreover, instead of
studying the fixation probability of a single mutant in the
limit of weak selection, many individual-based simulation
studies address the evolutionary fate of populations that
contain a higher number of mutants at start. In this
context, different intensities of selection have been em-
ployed, ranging from strong selection, captured by the
finite-population analogue of replicator dynamics (Hauert
and Doebeli, 2004; Santos and Pacheco, 2005; Santos et al.,
2006) to an extreme selection pressure modelled in terms of
the so-called imitation dynamics, used as a metaphor of
cultural evolution (Nowak and May, 1992; Huberman and
Glance, 1993; Nowak et al., 1994; Zimmermann et al.,
2005).

In this work we present an approach to inves-
tigate the evolution of cooperation as a function of
the initial fraction of cooperators present in the popu-
lation at the start of some evolutionary process, and
as a function of the intensity of selection. As a result,
we bridge the gap between the recently developed
evolutionary game theory in finite populations
and common practice in individual-based computer
simulations. To this end we address the problem of the
fixation of a given trait as well as how long it takes for
fixation to occur. We are particularly interested in
investigating the effects of stochasticity in the distribution
of fixation times, and to which extent the average fixation
times provide an accurate description of the overall
evolutionary dynamics for different games and at all
temperatures of selection.

We make use of a simple evolutionary dynamics
which recovers the fixation probabilities of the freque-
ncy-dependent Moran process in the limit of weak
selection but which, unlike the Moran process, enables
us to study the fixation probability for any value of
the intensity of selection, all the way up to the extreme
limit of imitation dynamics. Under such strong selec-
tion, an individual with higher fitness will always
replace an individual with lower fitness. Evolu-
tionary game dynamics in finite populations has also been
studied in a frequency-dependent Wright Fisher process
(Imhof and Nowak, 2006). For further models of finite
population game dynamics, see Riley (1979), Schaffer
(1988), Fogel et al. (1998), Ficci and Pollack (2000) and
Schreiber (2001).
2. Evolutionary dynamics in finite populations

Let us consider symmetric two-player games in which
two types of individuals interact via a payoff matrix

A

B

A B

a11 a12

a21 a22

 !
:

(2)

In the simplest case, the payoffs of A and B individuals only
depend on the fraction of both types in the population. If
there are i A individuals and N � i B individuals, then the A

and B individuals have payoffs pA ¼ ði � 1Þa11 þ ðN � iÞa12

and pB ¼ ia21 þ ðN � i � 1Þa22, respectively. Self-interac-
tions are excluded.
Here, we consider a process based on pairwise compar-

ison between individuals. Two individuals, A and B,
are selected at random. The individual chosen for
reproduction A replaces B with probability p, which
depends on the payoff difference pA � pB between the
two individuals. The composition of the population can
only change if both individuals are of different types. We
follow (Blume, 1993; Szabó and T +oke, 1998; Hauert and
Szabó, 2005) in choosing the Fermi function from
statistical physics for p

p ¼
1

1þ e�bðpA�pBÞ
. (3)

The parameter bX0, which corresponds to an inverse
temperature in statistical physics, controls the intensity of
selection and replaces w defined in Eq. (1). Small b (high
temperature) means that selection is almost neutral,
whereas for large b (low temperature) selection can become
arbitrarily strong. With decreasing intensity of selection b,
the probability for reproduction of the advantageous type
in the population decreases from 1 to 1

2
, selection becoming

neutral for b ¼ 0.
A major advantage of the pairwise comparison process

over the frequency-dependent Moran process (Nowak
et al., 2004) is that the payoff matrix can contain
unrestricted positive and negative entries, while for the
frequency-dependent Moran process there is an incon-
venient restriction because the fitness values have to be
positive. In contrast to the frequency-dependent Moran
process, the pairwise comparison process is invariant to
adding a constant to all entries of the payoff matrix, as it
only depends on payoff differences. Multiplication of the
payoff matrix leads to a change of the intensity of selection.
The transition probabilities to change the number of A

individuals from j to j � 1 are given by

P�j ¼
j

N

N � j

N

1

1þ e�bðpA�pBÞ
. (4)

For weak selection, b51, we can expand the Fermi
function and the transition probabilities become

P�j �
j

N

N � j

N

1

2
�

b
4

pA � pBð Þ

� �
. (5)
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In the frequency-dependent Moran process (Nowak et al.,
2004), an individual is chosen at random proportional to its
payoff. Its identical offspring then replaces a randomly
chosen individual. This amounts to the transition prob-
abilities

Pþj ¼
jð1� wþ wpAÞ

jð1� wþ wpAÞ þ ðN � jÞð1� wþ wpBÞ

N � j

N
, ð6Þ

P�j ¼
ðN � jÞð1� wþ wpBÞ

jð1� wþ wpAÞ þ ðN � jÞð1� wþ wpBÞ

j

N
. ð7Þ

The expansion of these transition probabilities for weak
selection, w51, leads to

Pþj �
j

N

N � j

N
1þ w

N � j

N
ðpA � pBÞ

� �
, ð8Þ

P�j �
j

N

N � j

N
1� w

j

N
ðpA � pBÞ

� �
. ð9Þ

While these transition probabilities are different from
Eq. (5) for weak selection, the ratio P�j =Pþj is identical for
the frequency-dependent Moran process and the pairwise
comparison process discussed here under weak selection.
For w51, we obtain for the frequency-dependent Moran
process

P�j

Pþj
� 1� wðpA � pBÞ. (10)

For the pairwise comparison process, we obtain the
identical result with w2b. As this ratio of transition
probabilities determines the fixation probability (as dis-
cussed below), both processes have the same fixation
properties for weak selection.

2.1. Fixation probabilities

Under pairwise comparison, and in the absence
of mutations, only when the two individuals chosen
have different strategies the total number of indi-
viduals with a given strategy can change by one.
This defines a finite state Markov process with an
associated tri-diagonal transition matrix, a so-called
Birth–Death process (Karlin and Taylor, 1975; Ewens,
2004). In general, the probability to reach the absorbing
state with 100% A given that the initial number of A

individuals is k can be written as

fk ¼

Pk�1
i¼0

Qi
j¼1P�j =PþjPN�1

i¼0

Qi
j¼1P�j =Pþj

. (11)

Here Pþj is the probability to increase the number of
A individuals from j to j þ 1 and P�j is the probability to
decrease that number from j to j � 1 (cf. Eq. (4)). We use
the usual convention that

Q0
j¼1x ¼ 1 for any x. Due to the

sums of products in this equation, a numerical implemen-
tation is prone to errors. In Traulsen et al. (2006b), we have
shown that the following analytical expression obtained by
replacing the sums by integrals constitutes an excellent
approximation for the fixation probability under the
pairwise comparison rule:

fk ¼
erf ½xk� � erf ½x0�
erf ½xN � � erf ½x0�

, (12)

where xk is given by xk ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðb=uÞ

p
ðkuþ vÞ, 2u ¼ a11 � a12 �

a21 þ a22a0 and 2v ¼ �a11 þ a12N � a22N þ a22, erfðxÞ ¼
ð2=

ffiffiffi
p
p
Þ
R x

0 dy e�y2 being the error function. The fitness
difference can be written as pA � pB ¼ 2uj þ 2v. The
quantity u measures the frequency dependence of payoffs:
for u ¼ 0, the fitness difference is independent of the
number of A and B individuals. For large N, the quantity v

measures the advantage of a A individual paired against a
B individual compared to the interaction of two B

individuals.
Let us first consider the case of u40. The fixation

probability can be approximated for weak selection, using
the expansion of the error function, erfðxÞ � 2x=

ffiffiffi
p
p
�

2x3=ð3
ffiffiffi
p
p
Þ for x51. This expansion leads to the fixation

probability

fk �
x0 � xk

x0 � xN

1þ
xN � xkð Þ x0 þ xk þ xNð Þ

3

� �

¼
k

N
1þ bðN � kÞ

u N þ kð Þ þ 3v

3

� �
. ð13Þ

This is identical to the weak selection result for the
frequency-dependent Moran process. This shows again the
identity with this process for weak selection. For u ¼ 0, we
find instead from Eq. (11) (or, equivalently, from Eq. (12)
in the limit u! 0)

fk ¼
e�2bvk � 1

e�2bvN � 1
, (14)

which is identical to the fixation probability of k

individuals with fixed relative fitness r ¼ e2bv (Kimura,
1968; Crow and Kimura, 1970; Ewens, 2004). Eq. (14)
holds for all payoff matrices where a11 � a12 ¼ a21 � a22, a
condition known as ‘‘equal gains from switching’’ (Nowak
and Sigmund, 1990). For the pairwise comparison process,
it actually describes frequency independent selection,
because the payoff difference is constant. For weak
selection, we can apply expðxÞ � xþ x2=2 and end up with

fk �
k

N
½1þ bðN � kÞv�, (15)

which is identical to Eq. (13) for u ¼ 0, as it should.
Finally, let us discuss the case of uo0. In this case, Eq. (12)

is still valid, but the arguments xj of the error functions are
now imaginary with vanishing real part. However, since
erfðixÞ ¼ i erfiðxÞ, where erfiðxÞ is the imaginary error
function, i cancels in the equation and the result is a real
number which still fulfills 0pfkp1. For weak selection, the
arguments of this function become small and the imaginary
error function can be approximated by erfiðxÞ � 2x=

ffiffiffi
p
p
þ

2x3=ð3
ffiffiffi
p
p
Þ for x51. This expansion leads again to Eq. (13).

In contrast to Eq. (11), the closed analytical fixation
probability Eq. (12) can also be approximated for very
strong selection, bb1, using the appropriate asymptotics of
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the error functions (Gradshteyn and Ryzhik, 1994). In the
limit b!1 and for u ¼ 0 the fixation probability is given
by fk ¼ 1� dk;0 for advantageous mutants, v40, and
fk ¼ dk;N for disadvantageous mutants, vo0. Here, di;j

denotes the Kronecker symbol, which is one if both indices
are equal and zero otherwise.

Eqs. (12) and (14) are approximations to Eq. (11) with
an associated error of order N�2. However, even for
populations as small as N ¼ 20 excellent agreement with
numerical simulations is obtained, as shown in Fig. 1, see
also Traulsen et al. (2006b). These expressions are valid for
any pressure of selection and allow a straightforward
analysis of limiting cases: for b ¼ 0, both Eqs. (12) and (14)
reduce to fk ¼ k=N, the result for neutral drift (Kimura,
1968). For b51 we have weak selection and the linear term
in b yields an approximation for the fixation probabilities
starting from an arbitrary number of mutants. Strong
selection is described by bb1 and reduces the process to a
semi-deterministic imitation process. The speed of this
process remains stochastic, but the direction always
increases individual fitness for b!1. This limit is outside
the realm of the frequency-dependent Moran process and
results from the nonlinearity of the Fermi function.
2.2. Fixation times

Since the evolutionary process in a finite population is
intrinsically stochastic, the system will always end up in
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Fig. 1. Fixation probabilities in a population of size N ¼ 20. Simulation

results (symbols) obtained from averaging over 106 realizations coincide

perfectly with the theoretical result, Eq. (12) (solid lines). Arrows indicate

increasing intensity of selection. For neutral selection (diamonds), the

fixation probability is given by the fraction of cooperators. In the

Prisoner’s Dilemma, fixation of cooperators becomes less likely with

increasing intensity of selection, as shown for b ¼ 0:05 (squares) and b ¼
0:1 (circles). Only for weak selection and a high initial number of

cooperators, they have reasonable chances. In the Snowdrift Game, the

fixation probability of cooperators increases with increasing intensity of

selection, as the internal equilibrium is closer to pure cooperation. Here,

the fixation probabilities are shown for b ¼ 0:05 (squares) and b ¼ 0:1
(circles). However, the fixation time of defectors increases accordingly, see

Fig. 2 (b ¼ 1, c ¼ 0:5).
one of the two absorbing states, corresponding to 100%
individuals of type A or of type B. The average time tk that
the system spends in the transient states 1; . . . ;N � 1
starting from k before it reaches fixation in k ¼ 0 or k ¼ N

is determined by the equation

tk ¼ 1þ Pþk tkþ1 þ ð1� Pþk � P�k Þtk þ P�k tk�1. (16)

Three different fixation times are of interest. Two are
conditional fixation times: given the process reaches the
state k ¼ 0 with B individuals only, how long does this
process take? If instead the state k ¼ N is reached, what is
the associated time? Finally, it is of interest also to find the
unconditional fixation time, that is, the time it takes until
the process reaches any of the absorbing states k ¼ 0 or
k ¼ N. In Appendix A, we show that this average
unconditional fixation time is given by

tk ¼ fkSN � Sk, (17)

where

Sj ¼ N2
Xj�1
n¼1

w�n
nþ1

Xn

l¼1

1þ w�12l

lðN � lÞ
wl

lþ1 (18)

and wl ¼ exp½bluþ 2bv�. For neutral selection (b ¼ 0), we
have t1 ¼ tN�1 ¼ 2

PN�1
l¼1 l�1, which increases logarithmi-

cally with N. In general, the unconditional fixation time tk

increases with the distance to the absorbing boundaries.
However, when the intensity of selection is so high that the
system will virtually always reach fixation in a particular
state, the unconditional fixation time can increase mono-
tonously towards the boundary at which fixation is not
observed.
Adopting the theory outlined in Antal and Scheuring

(2006), we can also compute the conditional average
number of time steps t0k required to reach the absorbing
state 0 given that the state 0 is reached (and not state N).
Such conditional fixation time t0k increases with increasing
k for all games, as the system always has to pass states with
lower k before fixation. For k ¼ 0 we have t00 ¼ 0, whereas
t0k diverges for k ¼ N. Similarly, the average conditional
time tN

k to reach state N can be calculated. It is zero for
k ¼ N and increases with decreasing k, diverging for k ¼ 0,
independently of the game. For general b, the average
fixation times can be computed numerically from Eqs. (17),
(28) and (30) (see Appendix A). On the other hand, the
average fixation times will only provide an accurate
description of the game dynamics to the extent that the
probability distribution of fixation times is sharply peaked
around the average value discussed so-far. In the following
we examine this issue by means of numerically exact
simulations for concrete examples involving different
games and intensities of selection.

2.3. Examples

As a first example, we consider the Snowdrift Game
(Hauert and Doebeli, 2004), which is structurally identical
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Fig. 2. Conditional fixation times for fixation of defectors in a population

of N ¼ 20. Symbols show simulation results whereas lines depict the

fixation times obtained according to Eq. (28). Arrows indicate increasing

intensity of selection. For neutral selection (diamonds), the fixation time

increases with the initial number of cooperators k, as the distance to the

point of fixation increases. In the Snowdrift Game, fixation times increase

with increasing selection intensity (squares b ¼ 0:05, circles b ¼ 0:1), as
the system spends much time near the internal Nash equilibrium. On the

contrary, for the Prisoner’s Dilemma, now stronger selection leads to

faster fixation (squares b ¼ 0:05, circles b ¼ 0:1). Here, increasing

selection intensity induces opposite behaviour for both games in what

concerns the average fixation times and the fixation probability, although

this is not the case in general (b ¼ 1, c ¼ 0:5, averages over 106

realizations).
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to the Hawk–Dove game (Maynard Smith, 1982). Two
players choose simultaneously between cooperation (C)
and defection (D). If one of them cooperates, both obtain
the benefit b. However, cooperation involves a cost cob,
which is divided among the two players when both of them
cooperate. If both choose defection, their payoff is zero.
The situation is characterized by the payoff matrix

(19)

The deterministic replicator equation for the Snowdrift
Game exhibits a stable interior equilibrium corresponding
to a coexistence of cooperators and defectors. Any initial
condition where both strategies are present will lead to this
stable equilibrium. However, in finite populations the
system will ultimately end up in a state where either C or D

individuals have taken over the population. As illustrated
in Fig. 1, the fixation probability fk becomes arbitrarily
high for strong selection (bb1) and koN. Hence, for
strong selection, fixation of cooperators becomes certain,
as limb!1 fk ¼ 1 for k40. However, a fixation probability
of one may be misleading. Indeed, although it is certain
that the system will fixate in 100% defectors, the time
required to reach fixation may be arbitrarily large.

Similarly to what happens for large population sizes
(Antal and Scheuring, 2006), the fixation time increases
exponentially with b. For b ¼ 1, N ¼ 20, b ¼ 1 and
c ¼ 0:5, the fixation time for a single cooperator in the
Snowdrift Game is already of the order of 109 elementary
time steps. For b ¼ 3, it reaches 1042 time steps. In other
words, a fixation probability of one is not very meaningful
in view of the time it would take to reach fixation. Such an
increase of fixation time with increasing intensity of
selection only takes place in games with mixed Nash
equilibria, as shown in Fig. 2, in which the fixation time is
plotted as a function of the initial number of cooperators in
the population for different selection pressures.

As a second example, we consider the Prisoner’s
Dilemma. In the Prisoner’s Dilemma, two players choose
again between cooperation and defection. Cooperation
costs c, leading to a benefit b4c for the other player. If
both individuals cooperate, they obtain the payoff b� c,
whereas cooperation against a defector leads to a payoff
�c. On the other hand, a defector playing against a
cooperator gets b. The payoff matrix reads

(20)

The fixation probability of cooperators decreases with
increasing intensity of selection b. This can be inferred
directly from our parametrization in which u ¼ 0, as
cooperators are then equivalent to disadvantageous
mutants in frequency independent selection, for whom
‘‘fitness’’ decreases with increasing intensity of selection b.
Also the fixation time of defectors decreases with increas-
ing b, as the probability for erroneous steps is reduced.
However, with increasing b, the fixation time departs from
the neutral selection limit, b ¼ 0, into the opposite
direction as for the Snowdrift Game. The larger b,
the shorter is the fixation time in the Prisoner’s Dilemma
(Fig. 2).
In summary, frequency-dependent selection accelerates

fixation compared to neutral selection for 2� 2 games with
pure Nash equilibria. On the other hand, for games with
mixed Nash equilibria such as the Snowdrift Game, the
fixation time can increase exponentially. For increasing
intensity of selection b the fixation time decreases for the
Snowdrift Game and increases for the Prisoner’s Dilemma.
When the intensity of selection becomes small (b! 0),
both games meet at the scenario of neutral drift.
2.4. Stochastic effects on the fixation times

As shown in Figs. 2 and 3, a perfect agreement between
the average fixation times is obtained when comparing
computer simulations with the theoretical results leading to
Eqs. (17), (28) and (30) of Appendix A. However, taking
into account the intrinsic stochastic nature of the process,
the right quantity to examine is the probability distribution
of fixation times. To the extent that this probability
distribution is sharply peaked around the average fixation
time, the theoretical results provide an accurate description
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of the dynamical process. As usual, one expects the theory
outlined in the previous section to become more accurate
for large populations, since in that limit stochastic
fluctuations are effectively suppressed.

In Fig. 4 we computed the probability distribution of
fixation times for the cases of neutral evolution, as well as
for the Prisoner’s dilemma and the Snowdrift Game
considered before in Fig. 2 (b ¼ 0:05, population size
N ¼ 20). The results depicted provide an impressive
account of the role of stochastic effects in what concerns
the fixation times, showing that the behaviour of the
probability distribution does not depend solely on popula-
tion size N, but, more importantly, depends sensitively on
the nature of the game and (naturally) on the intensity of
selection.

For b ¼ 0:05 and N ¼ 20, the distribution of conditional
fixation times in the Prisoner’s Dilemma is sharply peaked
around the average fixation time. Only relatively small
deviations from this average time are observed. With
decreasing intensity of selection, b! 0, the probability
distribution widens significantly. For neutral selection,
b ¼ 0, very long fixation times can occur, leading to an
average value that is considerably larger than the most
probable fixation time. Such an average value is of limited
information, as large deviations are possible. The situation
becomes dramatic in the Snowdrift Game, in which case
the variance of the probability distribution actually exceeds
the mean. The distribution is extremely flat and a wide
range of fixation times can be observed. Such large
fluctuations necessarily question the usefulness of such
calculations, not only in small populations, but also as a
function of the intensity of selection and the nature of the
game. Under such circumstances, stochastic effects provide
such an overwhelming contribution to the dynamics that
the average fixation time has no longer any predictive
meaning.

3. Games with more than two strategies

So far, we have only discussed 2� 2 games and the
associated fixation times. The mathematical description of
evolutionary game dynamics with more than two types is
more intricate, but there are several qualitative statements
that one can make. For the process introduced here, a
strategy that is not present at some time will never appear
later, as there are no mutations that lead to new strategies.
Hence, starting from d types of individuals, one type will
sooner or later go extinct. Then, the dynamics of the system
is restricted to a space of d � 1 strategic types. Ultimately,
an absorbing point is reached at which only a single type is
present. This holds for any type of game if the intensity of
selection is finite.
If more than two types of individuals are described, one

can introduce a mutation rate which is so small that at
most, two types are present in the population (Imhof et al.,
2005; Imhof and Fudenberg, 2006). In this case, one can
again make use of the fixation probabilities discussed here.
Another possibility is to consider large populations.
Whereas N !1 leads to a deterministic replicator
equation (given that the intensity of selection is fixed),
finite N leads to stochastic replicator equations. For the
process here, the framework discussed in Traulsen et al.
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(2006a) can be applied. For cyclic games in which the
replicator dynamics predicts closed orbits as Rock–
Paper–Scissors (Hofbauer and Sigmund, 1998), one can
apply such an approximation, introduce angular and radial
coordinates and calculate the average fixation time in finite
populations, see Reichenbach et al. (2006) for details.

4. Summary

We have introduced an alternative to the frequency-
dependent Moran process recently proposed in evolution-
ary game theory (Nowak et al., 2004; Taylor et al., 2004).
Our new process leads to a simple, closed-form equation
for the fixation probabilities, which can be readily
computed for any symmetric 2� 2 game, for any intensity
of selection and any initial number of mutants. The
intensity of selection is measured by a quantity that
resembles temperature in statistical physics. It can be
shown that a stochastic evaluation of payoffs in this
process decreases the intensity of selection (Traulsen et al.,
2007). For high intensity of selection (b!1) the process
is quasi-determinisitic in following the gradient of selec-
tion. For small intensity of selection (b! 0) the process
converges to neutral drift and allows to calculate correction
terms to neutral drift linear in b. We have calculated the
average time for fixation, which agrees perfectly with
numerical simulations of the process. The time to fixation
exhibits very large fluctuations. The average value and
the distribution of fixation times depends strongly on the
payoff matrix of the game. Even in small populations, the
average time until fixation may become arbitrarily high.
The distribution of fixation times is highly sensitive to both
the nature of the game and the intensity of selection. The
distribution may be so wide that the average fixation times
no longer have any predictive meaning, leading to
dynamical evolutions devoid of a characteristic time scale.
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Appendix A. Fixation times

A.1. Unconditional fixation times

For the time tj to reach a fixation in state (0 or N)
starting from state j, we have

tj ¼ 1þ Pþj tjþ1 þ ð1� Pþj � P�j Þtj þ P�j tj�1, (21)
which can be written as

sj ¼
P�j

Pþj
sj�1 þ

1

Pþj
, (22)

where sj ¼ tj � tjþ1 and t0 ¼ tN ¼ 0. In the remainder,
the product of the ratio of transition probabilities is
written as

Qj
k¼1 P�k =Pþk ¼ w�j

jþ1, where wj ¼ exp½bjuþ 2bv�.
The transition probabilities can be written in terms
of wj as

P�j ¼
j

N

N � j

N

1

1þ e�2bðujþvÞ
¼

j

N

N � j

N

1

1þ w�12j

. (23)

Iteration of Eq. (22) yields

sj ¼ �t1w
�j
jþ1 þ w�j

jþ1N2
Xj

k¼1

1þ w�12k

kðN � kÞ
wk

kþ1. (24)

For the fixation time, we obtain tj ¼ t1 �
Pj�1

k¼1 sk. For the
unconditional fixation time, we have t0 ¼ 0 and tN ¼ 0, as
fixation has already occurred. With tN ¼ 0, t1 can be
calculated as

t1 ¼ f1N2
XN�1
j¼1

w�j
jþ1

Xj

k¼1

1þ w�12k

kðN � kÞ
wk

kþ1. (25)

The average unconditional fixation time is finally given by

tj ¼ fjSN � Sj, (26)

where

Sj ¼ N2
Xj�1
n¼1

w�n
nþ1

Xn

k¼1

1þ w�12k

kðN � kÞ
wk

kþ1. (27)
A.2. Conditional fixation times

The average conditional fixation times can be com-
puted in an analogous way, as shown in Antal and
Scheuring (2006). Here, we just outline the results. The
average time t0i to reach the absorbing state 0 starting
from i, given that it is reached and not the other absorbing
state N, is

t0i ¼
1

1� fi

ðQN �QiÞ �QN , (28)

where fi is the probability to end up in N starting from i,
cf. Eq. (11), and

Qi ¼ N2
Xi�1
n¼1

w�n
nþ1

Xn

k¼1

ð1� fkÞ
1þ w�12k

kðN � kÞ
wk

kþ1. (29)

Similarly, the conditional average time tN
i to reach

absorbing state N (and not state 0) is given by

tN
i ¼

1

fi

ðR0 � RiÞ � R0, (30)
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where

Ri ¼ N2
XN�1

n¼iþ1

w1�n
n

XN�1
k¼n

fk

1þ w�12k

kðN � kÞ
wk

kþ1. (31)
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