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Abstract

Direct reciprocity relies on repeated encounters between the same two individuals. Here we examine the evolution of cooperation

under direct reciprocity in dynamically structured populations. Individuals occupy the vertices of a graph, undergoing repeated

interactions with their partners via the edges of the graph. Unlike the traditional approach to evolutionary game theory, where

individuals meet at random and have no control over the frequency or duration of interactions, we consider a model in which individuals

differ in the rate at which they seek new interactions. Moreover, once a link between two individuals has formed, the productivity of this

link is evaluated. Links can be broken off at different rates. Whenever the active dynamics of links is sufficiently fast, population

structure leads to a simple transformation of the payoff matrix, effectively changing the game under consideration, and hence paving the

way for reciprocators to dominate defectors. We derive analytical conditions for evolutionary stability.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Game theoretic ideas were first introduced to biology by
Hamilton (1964) and Trivers (1971), but the field of
evolutionary game theory was founded by Maynard Smith
and Price (1973) and Maynard Smith (1982). The replicator
equation (Taylor and Jonker, 1978; Hofbauer et al., 1979;
Zeeman, 1980) constitutes the mathematical foundation of
evolutionary game dynamics. It is a system of ordinary
differential equations describing how the relative abun-
dances (frequencies) of strategies change over time as a
consequence of frequency-dependent selection. The payoff
from the game is interpreted as biological fitness. Indivi-
duals reproduce proportional to their fitness. Reproduction
can be genetic or cultural. The expected payoff of an
individual is a linear function of the frequencies of all
strategies; the coefficients of this function are the entries of
the payoff matrix. For detailed reviews of the replicator
equation and other approaches to evolutionary game

dynamics, see Fudenberg and Tirole (1991), Weibull
(1995), Samuelson (1997), Hofbauer and Sigmund (1998,
2003), Gintis (2000), Bowles (2003), Cressman (2003),
Nowak and Sigmund (2004) and Nowak (2006a).
The act of cooperation typically involves a cost c to the

provider and a benefit b to the recipient. In the absence of a
specific mechanism for the evolution of cooperation,
natural selection favors defectors. There are at least five
mechanisms that can lead to the evolution of cooperation:
kin selection, group selection, direct reciprocity, indirect
reciprocity and network reciprocity ð¼ graph selectionÞ.
In this paper, we study the interaction between direct

and network reciprocity; however, unlike conventional
network reciprocity, as defined in Nowak (2006b), here the
network is adaptive, as discussed below. The study of the
evolution of cooperation under direct reciprocity on
dynamical networks deserves special attention, given the
recent results which show that co-evolution of population
structure with individual strategy provide an efficient
mechanism for the evolution of cooperation under simple
one-shot games (Pacheco et al., 2006a, b; Santos et al.,
2006c).
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Direct reciprocity is based on the idea of repeated
encounters between two individuals (Trivers, 1971) accord-
ing to the principle, ‘‘I scratch your back and you scratch

mine’’. The game theoretic framework of direct reciprocity
is the repeated Prisoner’s Dilemma (PD), which has been
the subject of numerous studies across various disciplines
(Rapoport and Chammah, 1965; Axelrod and Hamilton,
1981; Axelrod, 1984; Selten and Hammerstein, 1984;
Milinski, 1987; May, 1987; Axelrod and Dion, 1988;
Fudenberg and Maskin, 1990; Imhof et al., 2005). A large
number of strategies for playing the repeated PD have
been analyzed. The most prominent ones are tit-for-tat
(Axelrod, 1984), generous-tit-for-tat (Nowak and Sigmund,
1992), contrite-tit-for-tat (Sugden, 1986; Boerlijst et al.,
1997) or win-stay, lose-shift (Nowak and Sigmund, 1993).

In general, it is a very difficult task to find successful
strategies for playing the repeated PD (Axelrod, 1984;
Kraines and Kraines, 1988; Fudenberg and Maskin, 1990;
Lindgren, 1991). But if what we want is to investigate if
cooperation has any chance to evolve by direct reciprocity
at all, then a very simple game can be studied. We only
need to consider two strategies: unconditional defectors
(D), defect all the time; reciprocators (R) start cooperating
and then continue to cooperate as long as the opponent
cooperates, but defect if the opponent defects. Such
individuals can be thought of as playing a strategy like
tit-for-tat or Grim. Tit-for-tat cooperates on the first move
and then does whatever the opponent has done on the
previous move. Grim cooperates until the opponent defects
once and then permanently switches to defection. Despite
the difference between these two strategies, when playing
against an unconditional defector, tit-for-tat and grim lead
to the same sequence of cooperation in the first round and
unconditional defection from then on. Only if errors or
more complex strategy sets are considered, differences
between the strategies arise. Hence, a reciprocator will only
cooperate once against a defector and will behave as an
unconditional cooperator against another reciprocator.

Let us denote by w the probability of playing another
round. The average number of rounds between the same
two players is given by 1=ð1� wÞ. The payoff matrix for
reciprocators (R) versus unconditional defectors (D) is
given by

R D

R

D

b� c

1� w
�c

b 0

0
@

1
A; (1)

that is, reciprocators pay the cost c once, and uncondi-
tional defectors receive the benefit b only once.

One-shot and repeated games on spatial lattices have
been studied by many authors (Nowak and May, 1992,
1993; Wilson et al., 1992; Nowak et al., 1994; Lindgren and
Nordahl, 1994; Killingback and Doebeli, 1996; Nakamaru
et al., 1997, 1998; van Baalen and Rand, 1998; Szabó and
T +oke, 1998; Hauert et al., 2002; Szabó and Hauert, 2002;

Brandt et al., 2003; Hauert and Doebeli, 2004; Hauert and
Szabó, 2005; Szabó et al., 2005; Nowak, 2006a; Szabó and
Fáth, 2007). Evolutionary graph theory is an extension of
this approach to general population structure and net-
works (Lieberman et al., 2005; Pacheco and Santos, 2005;
Santos and Pacheco, 2005; Santos et al., 2005, 2006a, b;
Santos and Pacheco, 2006; Ohtsuki and Nowak, 2006a, b,
2007; Ohtsuki et al., 2006, 2007a, b; Pacheco et al., 2006a,
b). It is usually assumed that the population structure is
constant in the time scale of the evolutionary updating.
Recently, Ohtsuki and Nowak (2007) have investigated the
evolutionary feasibility of cooperation under direct reci-
procity for static networks. The combination of direct
reciprocity with (static) network reciprocity was shown to
open the way for reciprocators to invade (even when rare)
unconditional defectors, which is never possible in a well-
mixed population. The effect of network reciprocity is
strongest if people have few neighbors (or if most
interactions occur only with a subset of ‘‘very close
friends’’). In many real-world social and biological net-
works (Amaral et al., 2000; Dorogovtsev and Mendes,
2003; May, 2006; Santos et al., 2006c); however, the
average connectivity of individuals is not small.
In addition to static networks, one-shot-games on

dynamical graphs have also been investigated (Bala and
Goyal, 2000; Skyrms and Pemantle, 2000; Zimmermann et
al., 2004; Eguı́luz et al., 2005; Santos et al., 2006c). It has
been recently shown (Pacheco et al., 2006a, b; Santos et al.,
2006c) that the limitation to small connectivity may be
overcome if one evolves simultaneously individual strategy
and population structure. Here we investigate the impact of
co-evolution of strategy and structure in the evolution of
cooperation under direct reciprocity.
In Section 2 we introduce relevant concepts of evolu-

tionary game dynamics in finite and infinite populations, as
well as results related to direct reciprocity in well-mixed
populations. In Section 3 we introduce the model of active
linking dynamics, in which individuals seek new partners
and break existing ties at different rates. In Sections 4 and 5
we discuss our results for direct reciprocity on dynamical
graphs. In Section 6 we offer conclusions.

2. Evolutionary stability and risk-dominance in well-mixed

populations

Consider a game between two strategies, A and B, given
by the payoff matrix

A B

A

B

pAA pAB

pBA pBB

 !
:

(2)

An infinitely large population of A players cannot be
invaded by B players if pAA4pBA, that is, A is both a strict
Nash equilibrium and an evolutionarily stable strategy
(ESS). In an infinite well-mixed population, both strategies
are ESS whenever pAA4pBA and pABopBB. The replicator
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equation (Taylor and Jonker, 1978; Hofbauer et al., 1979;
Weibull, 1995; Hofbauer and Sigmund, 1998) admits an
unstable mixed equilibrium, located at x� ¼ ðpBB � pABÞ=
ðpAA � pAB � pBA þ pBBÞ, where x� is the equilibrium
frequency of A players in the population. Strategy A is
risk-dominant (RD) if it has the bigger basin of attraction,
that is, whenever pAA þ pAB4pBA þ pBB.

In finite, well-mixed populations, a crucial quantity is the
fixation probability of a strategy, that is, the probability
that the lineage arising from a single mutant of that
strategy will take over the entire population (Nowak et al.,
2004; Taylor et al., 2004). If pAA þ 2pAB4pBA þ 2pBB then
the fixation probability of strategy A is greater than the
fixation probability of a neutral mutant ð1=NÞ. To be more
specific, the product of population size and the intensity of
selection has to be small (Traulsen et al., 2006b). This
means selection favors the replacement of B by A, and
therefore a single A-player in a population of B-players is
an advantageous mutant. The condition can be expressed
as a 1

3-rule: if the fitness of the invading A at a frequency of
1
3
is greater than the fitness of the resident B then the

fixation probability of A is greater than 1=N (Nowak et al.,
2004; Imhof and Nowak, 2006; Ohtsuki et al., 2007c). This
condition holds in the limit of weak selection where the
payoff from the game is small compared to a constant
background fitness (Traulsen et al., 2006a; 2007a,b).
Furthermore, if A is RD compared to B, then the fixation
probability of A is greater than the fixation probability of B

for weak selection and large population size (Nowak et al.,
2004; Imhof and Nowak, 2006).

Given the payoff matrix associated with direct recipro-
city, Eq. (1), we can immediately write down the following
conditions (Ohtsuki and Nowak, 2007):

The reciprocator strategy is an ESS if

b

c
4

1

w
. (3a)

In this case, a defector in an infinitely large population of
cooperators has a lower fitness. The unstable fixed point is
located at

x� ¼
c

b� c

1� w

w
. (3b)

In a finite population, however, it is still possible that the
fixation probability of a single defector, rD, is greater than
that of a neutral mutant ð1=NÞ. Hence, if we want defectors
to be disadvantageous, we must require that rDo1=N. For
weak selection and large population size the condition
reads (Ohtsuki and Nowak, 2007)

b

c
4

3� w

2w
. (3c)

In this case, the basin of attraction of reciprocators is
greater than 1

3
. Reciprocators become RD when

b

c
4

2� w

w
, (3d)

that is, rR4rD for large populations and weak selection.
Finally, reciprocators become advantageous if rR41=N;

for large populations and weak selection, this is equivalent
to (Ohtsuki and Nowak, 2007)

b

c
4

3� 2w

w
. (3e)

3. Basic model and transformation of payoff matrices

Let us study a game between two strategies, A and B, in a
population of fixed size, N. There are NA players who use
strategy A, and NB players who use strategy B.

3.1. Unconditional strategies in finite, well-mixed

populations

First consider the case without dynamical linking or
conditional strategies. Strategies A and B are unconditional
and pure strategies of the 2� 2 game with payoff matrix

A B

A

B

pAA pAB

pBA pBB

 !
:

(4)

In each round of the game, A players choose action A, and
B players choose action B. Suppose that players keep
playing the game with all other players simultaneously.
Each A-player interacts with NA � 1 many A-opponents
and NB many B-opponents. Each B-player interacts with
NA many A-opponents and NB � 1 many B-opponents.
When it takes an amount of time t0 for players to complete
a round of game, the payoffs per unit time are calculated as

W A ¼ ðNA � 1Þ
pAA

t0
þNB

pAB

t0
,

W B ¼ NA

pBA

t0
þ ðNB � 1Þ

pBB

t0
. ð5Þ

If NA and NB are large, we can neglect �1 in Eq. (5) and
we obtain

W A

W B

 !
¼

N

t0

pAA pAB

pBA pBB

 !
xA

xB

 !
. (6)

Here xA and xB represent relative abundances of strategies,
A and B, namely, xA ¼ NA=N, xB ¼ NB=N, such that
xA þ xB ¼ 1.

3.2. Unconditional strategies in populations with dynamical

linking

Next we incorporate the effect of dynamical linking into
the payoff matrix. Consider two players in the population.
These players are able to play games only when there is a
link between them. It is possible for a player to have
multiple links and to play games with different partners
at the same time. Let fij represent the average fraction
of time a link is present between an ið¼ A;BÞ-player and
a jð¼ A;BÞ-player. In this case, the payoffs per unit
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time become

W A ¼ ðNA � 1ÞfAA

pAA

t0
þNBfAB

pAB

t0
,

W B ¼ NAfBA

pBA

t0
þNBfBB

pBB

t0
. ð7Þ

We have

W A

W B

 !
¼

N

t0

fAApAA fABpAB

fBApBA fBBpBB

 !
xA

xB

 !
. (8)

Eq. (8) suggests that the linking dynamics introduces a
simple transformation of the payoff matrix. We can study
standard evolutionary game dynamics using the modified
payoff matrix (Pacheco et al., 2006a, b).

The fractions of time that different types of links are active,
f, are calculated as follows. Links are formed at certain rates
and have specific life-times. Denote by X ðtÞ the number of
AA links at time t. Similarly, Y ðtÞ and ZðtÞ denote the
number of AB and BB links at time t. The maximum possible
number of AA, AB and BB links is, respectively, given by

X m ¼ NAðNA � 1Þ=2,

Y m ¼ NANB,

Zm ¼ NBðNB � 1Þ=2. ð9Þ

Suppose A and B players have a propensity to form new
links denoted by aA and aB, such that AA links are formed
at a rate a2A, AB links are formed at a rate aAaB and BB

links are formed at a rate a2B. Also suppose that the average
life-times of links are given by tAA, tAB and tBB ðbt0Þ.

Linking dynamics can then be described by a system of
three ordinary differential equations for the number of
links (Pacheco et al., 2006a, b):

_X ¼ a2AðX m � X Þ �
1

tAA

X ,

_Y ¼ aAaBðY m � Y Þ �
1

tAB

Y ,

_Z ¼ a2BðZm � ZÞ �
1

tBB

Z. ð10Þ

In the steady state, the number of links of the three
different types is given by

X � ¼
a2AtAA

a2AtAA þ 1
X m,

Y � ¼
aAaBtAB

aAaBtAB þ 1
Y m,

Z� ¼
a2BtBB

a2BtBB þ 1
Zm. ð11Þ

Hence we may write

fAA ¼
X �

X m

¼
a2AtAA

a2AtAA þ 1
,

fAB ¼ fBA ¼
Y �

Y m

¼
aAaBtAB

aAaBtAB þ 1
,

fBB ¼
Z�

Zm

¼
a2BtBB

a2BtBB þ 1
. ð12Þ

Examples for cumulative degree distributions of popula-
tion structures attained under steady-state dynamics for
different combinations of the relevant parameters are
shown in Fig. 1. Indeed, this simple model of linking
dynamics leads to single-scale networks as defined by
Amaral et al. (2000), with associated cumulative degree
distributions exhibiting fast decaying tails (Santos et al.,
2006c). Such tails which decay exponentially or faster than
exponential, leading to what are known as ‘‘broad-scale’’
and ‘‘single-scale’’ networks, respectively, are features
which, together with a large variability in the average
connectivity (Dorogovtsev and Mendes, 2003; May, 2006),
characterize most real-world social networks. The present
model only encompasses single-scale networks. In order to
describe the broad-scale networks often encountered in
social systems, more refined models should be developed.
The vertical arrows in Fig. 1 indicate the average

connectivity of the associated graphs, showing that
connectivity values similar to those measured empirically
(Dorogovtsev and Mendes, 2003) are easily obtained with
the present model. Note, in particular, that the dependence
of the stationary networks on the frequency of individuals
of a given type will automatically couple network dynamics
with the frequency-dependent evolutionary dynamics we
introduce in the following.
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Fig. 1. Cumulative degree distributions (defined as DðkÞ ¼
P

jXk Nj=N,

with Nj the number of nodes with degree j) for networks generated with

the present model, for populations of size N ¼ 103 and two different types

of individuals. The fast decaying tails correlate well with the observed tails

of real social networks (Amaral et al., 2000; Dorogovtsev and Mendes,

2003; May, 2006). The present model, however, leads to single-scale

networks (Amaral et al., 2000), broad scale networks being out of its scope

(for details of the degree distributions, see Pacheco et al., 2006a). On the

other hand, the dependence of the final network on the frequency of each

type of individuals leads to a natural coupling between network dynamics

and frequency-dependent strategy evolution. The vertical arrows indicate

the average connectivity of each graph, which is far greater than those

typically associated with static graphs where cooperation under direct

reciprocity thrives (Ohtsuki and Nowak, 2007). Parameters used: NA=N ¼

0:5, aA ¼ aB ¼ 1, bAA ¼ bAB ¼ bBB ¼ 50 (red solid curve), NA=N ¼ 0:35,
aA ¼ 1:1, aB ¼ 0:75, bAA ¼ bAB ¼ bBB ¼ 50 (blue dashed curve) and

NA=N ¼ 0:5, aA ¼ aB ¼ 0:2, bAA ¼ bAB ¼ bBB ¼ 10 (black dash–dot

curve).
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3.3. Conditional strategies in populations with dynamical

linking

So far we have assumed that strategies A and B are pure
strategies in a single game. What if they are strategies in a
repeated game? Consider reciprocators (R) and uncondi-
tional defectors (D). Each time a new link is established, a
reciprocator cooperates in the first round while an
unconditional defector never cooperates. Once a recipro-
cator faces defection by the opponent, he keeps defecting
until the link is broken.

Interactions with two R players last on average for time
tRR. Since it takes time t0 to complete a round, they play
on average tRR=t0 rounds of Prisoner’s Dilemma game
within the lifetime of that link. Suppose that the payoff
matrix of the single-round Prisoner’s Dilemma game is

given by

C D

C

D

pCC pCD

pDC pDD

 !
:

(13)

Both reciprocators gain the payoff of ðtRR=t0Þ � pCC in
time tRR. Therefore, given a link remains established, a
payoff per unit time is given by

tRR

t0
� pCC �

1

tRR

¼
pCC

t0
. (14)

A similar consideration yields that the payoff per unit time
between two unconditional defectors is given by

tDD

t0
� pDD �

1

tDD

¼
pDD

t0
. (15)

When a link is established between a reciprocator and
a defector, the link lasts for an average time tRD, so
that these players on average play tRD=t0 rounds of
Prisoner’s Dilemma game. In the first round, the recipro-
cator cooperates whereas the unconditional defec-
tor defects, which yields the payoff of pCD to the
reciprocator and pDC to the defector. From the second
round on, both keep defecting and gain pDD per round. The
average number of rounds of mutual defection is
ðtRD=t0Þ � 1. Since the whole repeated game takes time
tRD, the average payoff of reciprocators per unit time is,
under the assumption of the link remaining established,
given by

pCD þ
tRD

t0
� 1

� �
pDD

� �
1

tRD

¼
pDD

t0
þ

pCD � pDD

tRD

. (16)

Under the same assumption, the average payoff of
defectors per unit time is given by

pDC þ
tRD

t0
� 1

� �
pDD

� �
1

tRD

¼
pDD

t0
þ

pDC � pDD

tRD

. (17)

Taking into account the fraction of time when links are
absent, we find that the average payoffs per unit time of
reciprocators and unconditional defectors are

W R ¼ ðNR � 1ÞfRR

pCC

t0
þNDfRD

pDD

t0
þ

pCD � pDD

tRD

� �
,

W D ¼ NRfDR

pDD

t0
þ

pDC � pDD

tRD

� �

þ ðND � 1ÞfDD

pDD

t0
. ð18Þ

Therefore, for large populations we obtain

In the following, we will study the payoff matrix

R D

R

D

fRRpCC fRD pDD þ
t0
tRD

ðpCD � pDDÞ

� �

fDR pDD þ
t0
tRD

ðpDC � pDDÞ

� �
fDDpDD

0
BBB@

1
CCCA

(20)

as if associated with the evolutionary dynamics of a well-
mixed population. Remember that f’s in (20) are
determined by Eq. (12). In addition to the entries of the
2� 2 payoff matrix, we have six parameters in total,
aR; aD; tRR; tRD; tDD and t0.

4. Results

Let us investigate how the frequencies of strategies R and
D change under evolutionary dynamics. The simultaneous
evolution of strategy and structure will depend on the time
scales associated with strategy evolution (T) and structural
evolution ðtijÞ (Pacheco et al., 2006a, b; Santos et al.,
2006c). Whenever T5tij strategies evolve in an immutable
network, which leads to the framework investigated by
Ohtsuki and Nowak (2007). Whenever Tbtij graph
dynamics always attains a steady state before the next
strategy update takes place. This limit, which has been
shown to extend to a range of time scales which is wider
than expected (Santos et al., 2006c; Pacheco et al., 2006b),
is the novel one we shall investigate here. In the following,
we always assume that t05tij5T holds. Fig. 2 illustrates
the magnitudes of the different time scales that appear in
the present paper.
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W R

W D

 !
¼

N

t0

fRRpCC fRD pDD þ
t0
tRD

ðpCD � pDDÞ

� �

fDR pDD þ
t0
tRD

ðpDC � pDDÞ

� �
fDDpDD

0
BBB@

1
CCCA

xR

xD

 !
. (19)
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Let us study a standard Prisoner’s Dilemma game

C D

C

D

pCC pCD

pDC pDD

 !
¼

C D

C

D

b� c �c

b 0

� �
(21)

(we provide the general conditions for the case in which
pDDa0 in Appendix). Suppose, for simplicity, that both
reciprocators and unconditional defectors share the same
propensity, a � aR ¼ aD, to form a new link. Matrix (20)
simplifies to

R D

R

D

tRR

tRR þ a�2
ðb� cÞ

t0
tRD þ a�2

ð�cÞ

t0
tRD þ a�2

b 0

0
BB@

1
CCA: (22)

Multiplying (22) by ðtRD þ a�2Þ=t0 gives us

R D

R

D

seðb� cÞ �c

b 0

� �
;

(23)

where

se ¼
tRR

t0
�
1þ tRDa2

1þ tRRa2
. (24)

5. Discussion

As seen in (23) (compare with Eq. (1)), the parameter se

represents the effective number of rounds of mutual

cooperation. The larger the value of se the easier it is for
reciprocators to invade the entire population under active
linking. For fixed a, t0 and tRD, se is an increasing function
of tRR, which conveys the message that the more long-lived
the links are between reciprocators, the better for
cooperation. On the other hand, for fixed a, t0 and tRR,
se is also an increasing function of tRD. In other words, the
longer the lifetime of links between reciprocators and
defectors, the better for cooperation. This result seems
counter-intuitive. However, one may understand it if
one considers the type of interaction on this link in
detail. Once an RD link is established, the reciprocator
obtains the sucker’s payoff �c once. After that, both
individuals receive nothing. For the reciprocator, it is
better to keep this link active than breaking it, since
otherwise the link might be re-established again and the
defector would exploit him once more. Thus, for recipro-
cators a long lifetime of links is advantageous. If it is an
RR link, the mutual cooperation leads to a higher payoff.
An active RD link avoids multiple acts of exploitation by
the defector.
We now study how se behaves with a. When the

propensity to form a new link, a, is very small, se becomes

se �
tRR

t0
, (25)

which is exactly the same as the average number of rounds
played by two reciprocators. On the other hand, when a is
very large we obtain

se �
tRD

t0
, (26)
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Fig. 2. Characteristic time scales associated with direct reciprocity under active linking dynamics. We assume that a typical interaction between two

individuals has an average duration t0. For direct reciprocity to be effective, the characteristic duration of links between reciprocators ðtRRÞ, between

defectors ðtDDÞ and between reciprocators and defectors ðtRDÞ should be larger than t0. Nonetheless, each of this type of links may have different

characteristic lifetimes, as illustrated in the left panel. Thus, the average number of rounds between pairs of individuals with different strategies may be

different, as well as the average number of links between individuals of different types, as illustrated in the right panel. Finally, our analytical results rely

on the assumption that the characteristic time scale of active linking—of the order of any of ftRR; tRD; tDDg—must be much smaller than that associated

with strategy evolution (T), as illustrated in the left panel.
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which is the average number of rounds played between a
reciprocator and an unconditional defector. The feasibility
of cooperation relies on the propensity to form new links.
When this value is high, se is determined by the lifetime of
reciprocator–defector links. Since it is often the case in
reality that tRR4tRD, we find that the smaller the
propensity to establish new links the better for coopera-
tion, given that tRR contributes more to se than tRD.
Indeed, when the propensity to form a new link is high,
defectors, who tend to lose a link more frequently than
reciprocators, are able to re-establish the link quickly and
exploit a reciprocator in a ‘‘new’’ first round, which is
unfavorable for cooperation.

When we write se in terms of the effective discounting

factor, we

se ¼
1

1� we

or we ¼ 1�
1

se

, (27)

all the results from Eq. (3a)–(3e) hold for w ¼ we, provided
the population size N is large such that the underlying
mean-field treatment used here remains valid.

For example, the reciprocating strategy is an ESS against
unconditional defection whenever

b

c
4

1

we

¼
se

se � 1
(28)

holds.
In this work we took into account the time scale

associated with a single round of a repeated game, as well
as the lifetimes of different types of links, together with the
possibility that existing links are severed and new links are
established. As a result, and in the limit in which link
dynamics is faster than evolutionary dynamics of strate-
gies, we have obtained a game-theoretical problem
equivalent to a conventional evolutionary game in a well-
mixed population, with a rescaled payoff matrix. This
equivalence, however, is only mathematical, in the sense
that the problem under consideration does not allow us to
regain a well-mixed population limit easily. Clearly, the
model introduced here captures some of the stylized
features of social networks, in which individuals change
their social ties in time, and in which rewarding links tend
to last longer than unpleasant ones. On the other hand, one
may expect that random rewiring does not capture the
detailed mechanism(s) underlying social network dynamics
(Santos et al., 2006c). While the present model allows one
to assess the role of dynamic linking in the evolution of
cooperation under direct reciprocity, more elaborate
models should be considered in order to describe realistic
social dynamics.

Our model shows that, in what concerns the evolution of
cooperation under direct reciprocity, the path to coopera-
tion is facilitated by active linking dynamics. Cooperation
is most viable when links last long enough and the
propensity to form new links is not too high. Certainly
this model recovers the message already obtained before
that sparse static graphs favor cooperation (Ohtsuki and

Nowak, 2007). Yet, dynamic linking enlarges the scope of
feasibility of cooperation.

6. Conclusions

Whenever single round interactions of a Prisoner’s
Dilemma game are swift, and the re-adjustment of different
types of links occurs much faster than the re-adjustment
of strategies, we find that the role of link rewiring dynamics
is to introduce a rescaling of the payoff matrix associated
with direct reciprocity. The rescaling obtained widens the
scope of feasibility of cooperation already set forward by
Ohtsuki and Nowak (2007). Without dynamical linking,
reciprocators mutually cooperate in consecutive rounds
in a repeated game, whereas unconditional cooperators
take advantage of exploiting reciprocators only in the
first round. In the traditional framework of studying the
iterated Prisoner’s Dilemma game, one usually assumes
that the number of repeated games that one plays is
the same among individuals in the population, and so is
the number of the first round of repeated games. When
active rewiring and time scales are explicitly taken into
consideration; however, this homogeneous assumption
is lost, and one must take into consideration the competi-
tion between the lifetime of reciprocator–reciprocator
links and reciprocator–defector links and the rates of
link formation. As shown in Fig. 1, parameter values
which ensure the feasibility of cooperation under active
linking dynamics lead also to social graphs exhibiting
realistic features. Active linking opens a way for coopera-
tion by direct reciprocity to evolve on these realistic
networks.
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Appendix

For the general case in which pDDa0, Eq. (23) now reads

R D

R

D

sepCC ZpDD þ ðpCD � pDDÞ

ZpDD þ ðpDC � pDDÞ repDD

 !
;

(A.1)

where se has been defined before, re ¼
tDD

t0
�
1þ tRDa2

1þ tDDa2
, and

Z ¼ tRD=t0.
For Prisoner’s Dilemma we know that pDC4pCC4

pDD4pCD. Hence, direct reciprocity and active linking may
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effectively lead to a coordination game whenever

sepCC4ZpDD þ ðpDC � pDDÞ (A.2)

and

repDD4ZpDD þ ðpCD � pDDÞ. (A.3)
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