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Humans are organized in societies, a phenomenon that would never have been
possible without the evolution of cooperative behavior. Several mechanisms that
foster this evolution have been unraveled over the years, with population struc-
ture as a prominent promoter of cooperation. Modern networks of exchange and
cooperation are, however, becoming increasingly volatile, and less and less based
on long-term stable structure. Here, we address how this change of paradigm
affects the evolution of cooperation. We discuss analytical and numerical models
in which individuals can break social ties and create new ones. Interactions are
modeled as two-player dilemmas of cooperation. Once a link between two indi-
viduals has formed, the productivity of this link is evaluated. Links can be broken
off at different rates. This individual capacity of forming new links or severing
inconvenient ones can effectively change the nature of the game. We address ran-
dom formation of new links and local linking rules as well as different individual
capacities to maintain social interactions. We conclude by discussing how adap-
tive social networks can become an important step towards more realistic models
of cultural dynamics.
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16.1. Introduction

From human societies to the simplest biological systems, cooperative interactions
thrive at all levels of organization. A cooperative act typically involves a cost (c) to
the provider while conferring a benefit (b) to the recipient (with b > ¢) [Hamilton
(1996); Trivers (1985); Wilson (1975); Axelrod and Hamilton (1981)]. Individuals
try to maximize their own resources and are therefore expected to avoid paying
any costs while gladly accepting all the benefits offered by others. This ubiquitous
paradox is often analyzed in the framework of (evolutionary) game theory. Game
theory describes systems in which the success of an individual depends on the ac-
tion of others. The classical approach focused on the determination of optimal
strategic behavior of rational individuals in such a static setting [von Neumann and
Morgenstern (1944)]. Evolutionary game theory places this framework into a dy-
namical context by looking at the evolutionary dynamics in populations of players
[Maynard Smith (1982)]. The expected payoff from the game is a function of the fre-
quencies of all strategies. Successful behaviors spread in such a population. There
are two interpretations of evolutionary game theory: In the conventional setting,
the payoff is interpreted as biological fitness. Individuals reproduce proportional
to their fitness and successful strategies spread by genetic reproduction. A second
interpretation is the basis for cultural evolution in social systems: Successful behav-
iors are imitated with a higher probability. They spread by social learning instead
of genetic reproduction. Both frameworks are captured by the same mathematical
approach: The generic mathematical description of evolutionary game dynamics is
the replicator equation [Taylor and Jonker (1978); Hofbauer and Sigmund (1998);
Zeeman (1980)]. This system of nonlinear ordinary differential equations describes
how the relative abundances (frequencies) of strategies change over time.

The assumption underlying the replicator equation is that individuals meet each
other at random in infinitely large, well-mixed populations. But it also emerges in
other cases, e.g. if the interaction rates between individuals are not random [Taylor
and Nowak (2006)] or from a large-population approximation of evolutionary game
dynamics in finite populations [Traulsen et al. (2005)].

However, in reality the probability to interact with someone else is not the
same across a population or social community. Interactions occur on social net-
works which define the underlying topology of such cooperation dynamics. Ini-
tially, this line of research has focused on regular lattices [Nowak and May (1992);
Herz (1994); Lindgren and Nordahl (1994); Szabé and Téke (1998); Hauert (2002)].
More recently, more complex topologies and general networks have been considered
in great detail [Vainstein and Arenzon (2001); Abramson and Kuperman (2001);
Ebel and Bornholdt (2002a); Holme et al. (2003); Szabé and Vukov (2004); Santos
and Pacheco (2005); Ohtsuki et al. (2006); Santos et al. (2006b, 2008)]. While the
theoretical advances in this field are tremendous, there is so far a lack of exper-
imental data. Designing and implementing such experiments has proven difficult
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and, so far, only general statements as “the probability to be generous is correlated
with the number of social links of an individual” can be made [Branas-Garza et al.
(2007)].

One important property of social networks that is seldom addressed in theoret-
ical studies is that real world social networks are not static. Instead, we make new
friends and lose touch with old ones, depending on the kind of interaction we have
with them. This makes social networks an example of an adaptive network [Gross
and Blasius (2008)]. The basic idea is that interactions which benefit both partners
last longer than interactions where one partner is exploited by the other. Here, we
discuss such an approach, which leads to analytical results in certain limits. These
serve as important starting points for further developments.

16.2. Active Linking: Random Link Formation

We break down the model into two parts: Evolutionary dynamics of strategies
(or behaviors) of the individuals associated with nodes in a network whose links
describe social interactions. The adaptive nature of the social interactions leads to
a network linking dynamics. We consider two-player games of cooperation in which
individuals can choose to give help to the opponent (to cooperate, C), or to refuse
to do so (to defect, D). The network is of constant size with N nodes. The number
of links, however, is not constant and changes over time. There are N¢ individuals
that cooperate and Np = N — N¢ individuals that defect.

16.2.1. Linking dynamics

An interaction between two players occurs if there is a link between these players.
Links are formed at certain rates and have specific life-times. We denote by X (t)
the number of CC links at time ¢. Similarly, Y (¢) and Z(¢) are the number of
CD and DD links at time ¢. The maximum possible number of CC, CD and DD
links is given by X,, = N¢(N¢ —1)/2, Y,, = N¢Np, and Z,, = Np(Np — 1)/2,
respectively. Suppose cooperators form new links at rate ag and defectors form
new links at rate ap. Thus, CC links are formed at a rate o, CD links are formed
at a rate acap and DD links are formed at a rate a%,. The death rates of CC, CD
and DD links are given by vo¢, vep and vpp, respectively. If the number of links
is large, we can model the dynamics of links by differential equations. We obtain a
system of three ordinary differential equations for the number of links

X =a}(Xm - X) = yccX,
Y = OLcOtD(Ym — Y) — ’YC’DY; (16.1)
7 = a}(Zm — Z) = 1pp 7.
For a? > +, the network is almost complete, which recovers the results for well-
mixed populations. For a? < 7, the network is sparse with few links. The most
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Fig. 16.1. Frequency dependent steady state dynamics. Results of active linking dynamics for
a population size of N = 30 individuals. Cooperators are located in the “inner-rim”, and are
represented by blue circles, whereas defectors are located in the “outer-rim”, and are represented
by red circles. In this way, CC-links (solid cyan lines) live only within the “inner-rim”, whereas
CD-links (solid red lines) occupy the space between the rims while DD-links (solid grey lines)
cross the entire region of the figure. Each panel depicts a snapshot in the steady state of the
active-linking dynamics, associated with a different (and fixed) frequency of C' and D players. The
parameters determining the active linking dynamics are: ac = ap = 0.5, ycc = 0.5, y¢p = 0.25
and ypp = 0.5.

interesting case we discuss below is o ~ 7, where the system has fixed points with
intermediate ranges of X, Y and Z. Rescaling « and 7 in an appropriate way (note
that the equation contains squares of o and linear terms of ) does not change the
fixed points of the system, but affects the overall timescale of active linking. When
this process is coupled with strategy dynamics, such changes can be crucial.

While the above is probably the simplest possibility to model linking dynamics,
more sophisticated choices are possible, taking for example the number of existing
links of a node into account. However, to address some general properties of the
coevolution between links and strategies, we concentrate on the simplest choice first.
In the steady state, the number of links of the three different types is given by

ag
X' =Xp, = Xmocc,
o + oo
" acap
Y*=Yn———""—="Ynoopn, (16.2)

m
acap +Yop

7 = Zy— 2D

mn Oz2D +YpD
Here, ¢cc, ¢cp, and ¢pp are the fractions of active CC, CD and DD links in
the steady states. Examples of population structures attained under steady-state

= Zm®DD -

dynamics for three different combinations of (N¢, Np) are shown in Fig. 16.1.

16.2.2. Strategy dynamics

Next, we address the dynamics of the strategies at the nodes. We consider the
stochastic dynamics of a finite population, i.e. we restrict ourselves to finite net-

16-pacheco
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works. We consider general two-player games of cooperation given by the payoff
matrix

¢ D

g @ f_;) (16.3)

Thus, a cooperator interacting with another cooperator obtains the reward from
mutual cooperation R. Cooperating against a defector leads to the sucker’s payoff
S, whereas the defector obtains the temptation to defect T in such an interaction.
Finally, defectors receive the punishment P from interactions with other defectors.
A social dilemma arises when individuals are tempted to defect, although mutual
cooperation would be the social optimum (R > P). We distinguish three generic
cases of 2-player social dilemmas:

e Dominance: When T > R > P > S, we enter the realm of the Pris-
oner’s Dilemma (PD) [Rapoport and Chammah (1965)], where coopera-
tion is dominated by defection. The opposite scenario, when R > T and
S > P, poses no social dilemma and is referred to as a Harmony Game
(HG) [Posch et al. (1999)].

e Coordination: R > T and S < P leads to what is called coordination or
Stag Hunt games (SH) [Skyrms (2003)], in which it is always good to follow
the strategy of the majority in the population. Except for R+ S5 =T + P,
one strategy has a larger basin of attraction. This strategy is called a risk
dominant strategy. For R+ .S > T 4 P, cooperation is risk dominant.

e Coexistence: In the case of R < T and S > P, known as a Hawk-Dove
[Maynard Smith (1982)] or Snowdrift game (SG) [Sugden (1986); Doebeli
and Hauert (2005); Hauert and Doebeli (2004)], a small minority is fa-
vored. This means that the ultimate outcome in a population of players is
a mixture of strategies C' and D.

From the payoff matrix, we can calculate the payoffs of the individuals, depending
on the number of interactions they have with cooperators and defectors. On a
complete network, the payoffs are

TTC = R(NC — 1) + SNp (16.4)
and
7p =TNe+ P(Np —1). (16.5)

Often, the payoffs are scaled by 1/(IN —1), such that the payoffs do not increase with
the population size. For the strategy update process defined below, this corresponds
simply to a rescaling of the intensity of selection, i.e. changing the noise intensity, if
all individuals have the same number of interactions. If the number of interactions
is not the same for all players, the heterogeneity between players can lead to new
effects [Santos et al. (2006b); Santos and Pacheco (2006)].
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For strategy dynamics, we adopt the pairwise comparison rule [Szab6 and Td6ke
(1998); Blume (1993)], which has been recently shown to provide a convenient frame-
work of game dynamics at all intensities of selection [Traulsen et al. (2007, 2006)].
According to this rule, two individuals from the population, A and B are randomly
selected for update (only the selection of mixed pairs can change the composition of
the population). The strategy of A will replace that of B with a probability given
by the Fermi function (from statistical physics)

1

= e (16.6)

p

The reverse will happen with probability 1 — p. The quantity 3, which in physics
corresponds to an inverse temperature, controls the intensity of selection. For § <«
1, we can expand the Fermi function in a Taylor series and recover weak selection,
which can be viewed as a high temperature expansion of the dynamics [Nowak
et al. (2004); Traulsen et al. (2007)]. For 8 > 1, the intensity of selection is high.
In the limit 0 — oo, the Fermi function reduces to a step function: In this case
the individual with the lower payoff will adopt the strategy of the other individual
regardless of the payoff difference.

The quantity of interest in finite population dynamics is the fixation probability
p, which is the probability that a single mutant individual of one type takes over a
resident population with N — 1 individuals of another type.

16.2.3. Separation of timescales

The system of coevolving strategies and links is characterized by two timescales:
One describing the linking dynamics (7,), the second one describing strategy dy-
namics (7.). We can obtain analytical results in two limits, where both timescales
are separated. Defining the ratio W = 7./7,, separation of time scales will occur
for W« 1and W > 1.

16.2.3.1. Fast strategy dynamics

If strategies change fast compared to changes of the network structure, active linking
does not affect strategy dynamics. Thus, the dynamics is identical to the evolution-
ary game dynamics on a fixed network. Such systems have been tackled by many
authors for a long time [Nowak and May (1992); Herz (1994); Lindgren and Nordahl
(1994); Szabé and Téke (1998); Hauert (2002); Vainstein and Arenzon (2001); Szabé
and Vukov (2004); Abramson and Kuperman (2001); Ebel and Bornholdt (2002a);
Holme et al. (2003); Santos and Pacheco (2005); Ohtsuki et al. (2006); Santos et al.
(2006b, 2008)]. The difficulty of an analytical solution for such systems is deter-
mined by the topology of the network, which corresponds to an initial condition in
our case. Analytical solutions are feasible only for few topologies. One important
limiting case leading to analytical solutions are complete networks corresponding



July 28, 2009 15:19 World Scientific Review Volume - 9.75in x 6.5in 16-pacheco

Evolution of Cooperation in Adaptive Social Networks 379

to well-mixed systems. In this case, the fixation probability can be approximated
by

P erf(&1] — erf[&o]

erf[én] — erf[go] (16.7)

where erf(z) is the error function and & = \/g(ku + v) [Traulsen et al. (2006)].
We have 2u=R—-S—-T+ Pand2v=—-R+ SN -TN+T.

For u — 0, we have pc = (1 — e720v) /(1 — e=20vN),

If strategy dynamics is fast, the linking dynamics only becomes relevant in states
where the system can no longer evolve from strategy dynamics alone, but changing
the topology allows to escape from these states.

16.2.3.2. Fast linking dynamics

Whenever W > 1 linking dynamics is fast enough to ensure that the network will
reach a steady state before the next strategy update takes place. At the steady
state of the linking dynamics, the average payoffs of C' and D individuals are given
by

TC = R¢CC(NC - 1) + SocpNp (16.8)
and
WD:T¢CDNC+P¢DD(ND_1)~ (169)

Note that the effective number of interactions of cooperators and defectors can
become very different if ¢cc > ¢pp or vice versa. Comparing Eqs. (16.8) and
(16.9) to Egs. (16.4) and (16.5) suggests that the linking dynamics introduces a
simple transformation of the payoff matrix. We can study standard evolutionary
game dynamics using the modified payoff matrix

C D C D
C (Rocc So¢cp\ C (R 8

Consequently, linking dynamics can change the nature of the game [Pacheco et al.
(2006b)]. So far, we have only shown this in the limit where linking dynamics is
much faster than strategy dynamics (W > 1). However, the result is expected
to hold even when the two time scales are comparable (see below and also Refs.
[Pacheco et al. (2006)b,a].

In general, all generic transformations are possible, as illustrated in Fig. 16.2.
The transition points can be determined as follows: Strategy C'is a Nash equilibrium
for R > T. This property changes to R’ < T’ when

2
R _dep _ap ac+ice (16.11)

T = ¢cc oacacap+ycp
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Fig. 16.2. When linking dynamics occurs much faster than strategy dynamics, the nature of the
game being played changes. The arrows indicate the conditions under which a game located at
the arrow start is transformed into a game located at the arrow end.

For example, ¢cop can be increased by reducing the death rate of C'D links, vop.
With increasing ¢cp, the condition is fulfilled at some point. At the transition
point, C' is either transformed into a Nash equilibrium or loses this property. An
equivalent transition for D is given by the condition

P ¢cp ac o +9pp
— = 16.12
5 ( )

< = — .
¢pp  ap acap +ycp

However, the conditions are not entirely independent, since at least two parameters
have to be varied. Usually, it is enough to vary the three link-death rates v and fix
the link-birth rates a to observe these transitions. It is also worth mentioning that,
in coordination games, the transformation can change risk dominance.

16.2.4. Comparable timescales

As we have shown, active linking can lead to a wide range of scenarios that effec-
tively change the character of the game. However, the analytical results have been
obtained assuming time scale separation. Figure 16.3 shows the results of numerical
simulations for a gradual change of the time scale ratio. Deviations from the ana-
lytical predictions are limited to a single order of magnitude. In other words, the
time scale separation is not a very strong assumption and remains valid for a much
wider range of parameters than expected. Even for moderate active linking, our an-
alytical results are recovered, i.e. they hold when self-organising network structures
and the evolutionary game dynamics on the network are intimately entangled. Hav-
ing identified the relevance of time scale separation in a minimal model of linking
dynamics, we now turn to more complex linking dynamics based on local rules.
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Fig. 16.3. Active linking effectively changes the payoff matrix and the nature of the game. (a) We
start from a complete network without structure dynamics (W = 0) and a Prisoner’s Dilemma
game. In this case, the fixation probability of C' (full line) is essentially zero for all initial numbers
of C. With active linking (dashed line), the game turns into a Stag Hunt game. In this case,
C becomes risk dominant and the fixation probability of C exceeds 0.5 if the initial number of
C individuals is larger than 36. (b) Numerical simulations reveal the range of validity of our
analytical approximations. We start from 50% cooperating individuals. For small W, cooperators
never reach fixation. But already for W = 0.1, their fixation probability is close to one. Thus,
moderate active linking is sufficient to make cooperation the dominant strategy here (averages
over 100 realizations, population size N = 100, intensity of selection 8 = 0.05, ac = ap = 0.4,
Ycc = 0.16, y¢p = 0.80 and ypp = 0.32.)

16.3. Individual Based Linking Dynamics: Local Link Formation

In the model discussed in Section 16.2, we have a fluctuating number of links and
analytical results in the two limits where the time scale of linking dynamics and
strategy dynamics are well separated, allowing for the mean-field treatment con-
sidered. We now introduce an alternative description in which the number of links
is conserved, but in which decision to maintain or rewire a link results both from
individual preference in the choice of partners and negotiation between individuals
linked [Santos et al. (2006a); Van Segbroeck et al. (2008)]. Such an individual based
decision making cannot be dealt with at a mean-field level and calls for a numerical
implementation.

16.3.1. Specification of the linking dynamics

To reduce the number of parameters, let us start by restricting the space of possible
games by fixing R=1and P=0, while -1 < S<1land 0<T <2.

¢ D

g (; i) (16.13)

This spans the four dynamical outcomes introduced before: a) HG (S > 0 and
T<1);b)SG (S>0and T >1);¢)SH (S<0and T < 1) and d) PD (S < 0 and
T > 1) (see Section 16.2.2).
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’ Cooperators
. Defectors

Fig. 16.4. Readjusting social ties. Cooperators and defectors interact via the links of a network.
B is satisfied, since A is a cooperator (T" > 0). On the other hand, A is unsatisfied with this
situation (S < 1). Therefore, A wants to change the link whereas B does not. The action taken is
contingent on the fitness m4 and wpg of A and B, respectively. With probability p (see Eq. (16.6)),
A redirects the link to a random neighbor of B. With probability 1 — p, A stays linked to B.
Finally, if both players are dissatisfied, the same methodology is used to decide who keeps the
connection.

Because S <1 and T > 0, the payoff against a cooperator is always higher than
the payoff against a defector, cf. Eq. (16.13). Thus, interacting with a cooperator
is always the best possible option. Consequently, every individual will be satisfied
when connected to a C' and dissatisfied otherwise. Keeping the total number of
links constant, all individuals are now able to decide, on an equal footing, those
ties that they want to maintain and those they want to change. The co-evolution
between strategy and network structure is therefore shaped by individual prefer-
ences towards interacting with one of the two strategies [Santos et al. (2006a)].
Figure 16.4 illustrates the process. If A is satisfied, she will decide to maintain the
link. If dissatisfied, then she may compete with B to rewire the link (see Fig. 16.4),
rewiring being attempted to a random neighbor of B. Thus, the loser in a com-
petition for a link loses an interaction. This paves the way for the evolution of a
degree-heterogeneous network. The intuition behind this reasoning relies on the
fact that agents, equipped with limited knowledge and scope, look for new social
ties by proxy [Kossinets and Watts (2006)]. Such a procedure can only be treated
numerically and does no longer lead to a simple rescaling of a payoff matrix as
the mechanism discussed in Section 16.2. On the other hand, it introduces some
features characteristic of realistic social networks.

The fact that all individuals naturally seek to establish links with cooperating
individuals, creates possible conflicts of interests as illustrated in Fig. 16.4. For
instance, B is satisfied, because she can profit from A. Obviously, A is not satisfied
and would prefer to seek for another cooperator. Decision is contingent on the
payoff 4 and 7 of A and B, respectively. With probability p = [14 e~ Alma—7sl]-1
(also used in the strategy update, cf. Eq. (16.6)), A redirects the link to a random
neighbor of B. With probability 1—p, A stays linked to B. Whenever both A and B
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fraction of cooperators

Fig. 16.5. Final frequency of cooperators in all games for different time-scale ratios between
strategy and structure dynamics. Results for the fraction of successful evolutionary runs ending
in 100% of individuals with strategy C for different values of the time scale ratio W, starting from
50% of each strategy. We study the four different games in the area 2 > T >0and 1 > S > —1:
HG, SG, SH and PD (see Section 16.2.2). For W = 0 (N = 103, z = 30 and # = 0.005), the
results fit the predictions from well-mixed populations, although individuals only interact with
a small subset of the population. With increasing W (faster structure dynamics), the rate at
which individuals readjust their ties increases, and so does the viability of cooperators. Above
a critical value Wepiticar ~ 4.0 (see also Fig. 16.6), cooperators efficiently wipe out defectors.
For the strategy evolution dynamics adopted here (pairwise comparison, see Section 16.2.2), and
according to [Ohtsuki et al. (2006)], cooperators would never be favored in static networks.

are satisfied, nothing happens. When both A and B are unsatisfied, rewiring takes
place such that the new link keeps attached to A with probability p and attached
to B with probability 1 — p. Thus, the more successful individual keeps the link
with higher probability.

16.3.2. Numerical results

As previously, this model establishes a coupling between individual strategy dy-
namics and population structure dynamics. This leads necessarily to a time scale
associated with strategy evolution, 7, and a second associated with structure evo-
lution, 7,. When the ratio W = 7./7, approaches 0, the network dynamics is
irrelevant and we recover the fast strategy dynamics of Section 16.2.3.1. On the
other hand, with increasing W individuals become apt to adapt their ties and form
a degree-heterogeneous network with increasing efficiency.

The contour plots in Fig. 16.5 illustrate the final fraction of cooperators for
different values of the ratio W in networks with average connectivity z = 30 (this

16-pacheco
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Fig. 16.6. Co-evolution of strategies and links in the game region in which defectors should
dominate for different time-scales. Left panel: Final frequency of cooperators at end as a function
of W for different average connectivity z. For each average connectivity z, there is a critical value
of the time scale ratio W — W,.;ticai — above which cooperators wipe out defectors. Right panel:
Connectivity kmaqz of the largest hub in the network, as a function of the time scale ratio W. With
increasing z, W iticar increases. In all cases, the heterogeneity of the associated network becomes
maximal at Wepiticqr- For higher values of W, the heterogeneity decreases again when defectors
decrease in frequency. For high values of W, defectors are wiped out and only the heterogeneity
generated by the rewiring mechanism in a neutral system prevails (Payoffs R=1,T =2, 5 = —1
and P = 0. Intensity of selection 8 = 0.005).

value reflects the mean value of the average connectivities reported in [Dorogotsev
and Mendes (2003)] for socials networks). We plot the fraction of cooperators who
survive evolution, averaged over 100 independent realizations for the same values
of the game payoff entries (7',.5) and the time scale ratio W. For W = 0 the results
reproduce, as expected [Santos et al. (2006b)], the predictions for finite, well-mixed
populations. Yet, with increasing W, cooperators gain an advantage, as they can
terminate their undesirable interactions with defectors. Rewiring changes the strat-
egy dynamics and paves the way for a radically distinct evolutionary outcome in
which cooperators are now able to dominate for the entire range of games. Under
structural dynamics, cooperators can cut their links to defectors, which gives them
an advantage compared to the situation on a static network. The swifter the re-
sponse of individuals to the nature of their ties, the easier it gets for cooperators to
wipe out defectors. Note further that cooperators already dominate defectors for
W = 4, corresponding to a situation far from the time-scale separation conditions
defined in Section 16.2.3.

Additional insight is provided in Fig. 16.6 (left panel), where we show how
cooperation dominates defection as a function of W when T'= 2 and S = —1 (lower
right corner of the panels in Fig. 16.5), which represents the most challenging case
for cooperators. Different values of the average connectivity z are shown. For small
W, cooperators have no chance. Their fate changes as W approaches a critical value
Weriticat — which increases monotonically with connectivity z — cooperators wiping
out defectors above We,iticar (the increase of We,iicqr with z is expected, since there
are more links to be rewired; in practice, We,itical is determined as the value of W at
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which the frequency of cooperators crosses 50%). Thus, the evolutionary outcome
and effective game at stake relies on the capacity of individuals to adjust to adverse
ties.

Figure 16.6 also provides evidence of the detailed interplay between strategy
and structure. On one hand, strategy updating promotes a local assortment of
strategies, since Cs breed Cs and Ds breed Ds. On the other hand, under struc-
tural updating, one is promoting local assortative interactions between cooperators
(that is, C'C-links) and disassortative interactions between defectors and coopera-
tors (that is, C'D-links), which constitute favorable steps for cooperators, from an
individual point of view. Clearly, when simultaneously active, strategy update will
reinforce assortativity among C's, but will inhibit disassortativity between Ds and
C's, which overall will promote the dominance of cooperation over defection.

16.3.3. Graph structures under individual based linking dynamics

For any W > 0, individual choices lead to heterogeneous graphs in which some
individuals interact more and more often than others. The overall onset of increase
of heterogeneity qualitatively follows the wave of cooperation dominance shown in
Fig. 16.5 [Santos et al. (2006a)]. In fact, the overall heterogeneity of the graph in-
creases as W increases reaching a maximum at W 4icai, above which heterogeneity
decreases again down to a stationary value determined by neutral dynamics in a
system with one strategy only [Santos et al. (2006a)]. The results shown suggest
that the adaptive dynamics of social ties introduced here coupled with social dilem-
mas accounts for the heterogeneities observed in realistic social networks [Amaral
et al. (2000)].

16.4. Local Linking with Individual Linking Time Scales

In the two previous models, the linking dynamics proceeds population-wide at the
same speed, determined by W. This implies that all individuals are assumed to
react in the same way to adverse social ties. It is commonly observed, however,
that different individuals respond differently to the same situation [Rubin (2002);
Ridley (2003); Buchan et al. (2002)] — some have the tendency to swiftly change
partner, whereas others remain connected even though they are dissatisfied with
their partners’ behavior. Extending the linking dynamics introduced in the previous
section allows us to represent this kind of behavioral diversity [Van Segbroeck et al.
(2008, 2009)].

16.4.1. Specification of the linking dynamics

We adopt the same parameterization of 2 X 2 games as in Section 16.3 and fix the
difference between mutual cooperation and mutual defection to 1, making R = 1
and P = 0. We focus on the PD in which § < 0 and T > 1, i.e. when defection
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unilateral nothing unilateral
decision happens decision

competition competition

Fig. 16.7. Decision on whose preference (either redirect the link when dissatisfied or maintain the
link when satisfied) prevails in case of unilateral or mutual dissatisfaction among the interacting
individuals A and B. The different colors indicate the three possible outcomes of the rewiring
competition between the two individuals. First, as each individual competes for the link with
probability given by her parameter o, A and B compete both with probability c40p (indicated
by the hatched zones). In this case, decision is determined by the payoff-dependent probability
p (see Eq. (16.6)). Second, when only one of the individuals competes (indicated by the gray
zones), this individual takes a unilateral decision. In total, A’s preference prevails with probability
qga = oca0opp + oall — op], B’s preference with probability ¢gg = caop(1 —p) + op[l — o4
Finally, the white zone indicates the situation in which both individuals refuse to compete, such
that the link remains unchanged.

is expected to dominate, although the model could easily be applied to SH and
SG games as well. Since S < 1 and T" > 0, every individual prefers interacting
with cooperators to interacting with defectors. Consequently, everyone attempts
to maintain links with cooperators, but change links with defectors. However, un-
like before, individuals are now not necessarily equally willing to engage in these
conflicts. We represent their eagerness to do so by introducing an individual charac-
teristic o € [0, 1]. Individuals with lower values of o will be more resilient to change,
and hence can also be viewed as more loyal towards their interaction partners. In
this way, the behavior of each individual is uniquely defined by two parameters: the
game strategy (C or D) and the topological strategy (o). Note that these quanti-
ties are both transferred during strategy update. Thus, both aspects of a players
strategy are subject to evolution and change over time.

Figure 16.7 illustrates how o influences the rewiring decisions. Consider two
connected individuals A and B, whose topological strategies are given by o4 and
op- A potential conflict about the link arises as soon as at least one of the individ-
uals is dissatisfied about the interaction. If this is the case, both A and B decide
independently of each other whether they will compete for the link or not. Each
individual competes with probability given by her topological strategy o. As such,
o4 and op define three possible outcomes for the competition over the link between
A and B. First, both A and B compete for the link with probability o sop. The
individuals’ payoffs m4 and wp ultimately dictate the winner of this conflict. The
decision of A prevails with probability p = [1 + e# [”_”B]]_l, the decision of B
with probability 1 — p. If decision is to redirect the link, the new partner is chosen
randomly from the immediate neighbors of the former partner. Second, A competes
while B does not with probability 0 4[1 —og]. In this case, A decides the fate of the
link unilaterally. Similarly, when B competes but A does not (this happens with
probability o[l — c4]), B decides the fate of the link unilaterally.
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Fig. 16.8. The effect of a strategy-dependent willingness to change o on the final frequency
of cooperators. Results show the fraction of evolutionary runs ending in 100% of cooperating
individuals, starting from 50% of each strategy, and this in relation to the game parameter T.
The other game parameter S is chosen such that 7"+ S = 1 is satisfied, bringing us into the
realm of the PD. The situation in which all individuals are equally willing to react to adverse
ties (cc = op = 1.0) serves as a baseline. Reducing op makes it easier for Cs to wipe out Ds.
Reducing o, on the other hand, has the opposite effect (W = 2.5, N = 103, z = 30, 8 = 0.005).

Hence, both individuals have the opportunity for a unilateral decision. Taken
together, A’s decision prevails with probability ga = caopp + oa[l — o] and
B’s decision with probability gz = ca0p(l — p) + o[l — 04]. Finally, the link
remains untouched with probability (1 —o4)(1 — o), since no individual competes
for the link. This last possibility encompasses the situation in which the social tie
is maintained despite, e.g. mutual dissatisfaction. Overall, o introduces a simple
means to study the evolution of each individual’s willingness to sever adverse ties.
On the one hand, when all individuals have 0 = 0, no links are rewired, reducing
the population to a static society. On the other hand, when o is maximal (= 1),
the limits investigated in the previous section are recovered.

16.4.2. Numerical results

We start by associating the topological strategy ¢ of an individual with her strategy
in the game. This means that individuals with the same game strategy will also
have the same topological strategy. In the active linking model of Section 16.2, this
is also included, as we assume that the propensity to form links and the lifetime of
links is determined by the strategies.

When Ds are less eager to change partner (op = 0.5 and op = 0.0) than Cs
(occ = 1.0), cooperators ensure the stability of favorable interactions while avoiding
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adverse ones more swiftly. This makes local assortment of C's more effective, en-
hancing the feasibility of C's’ survival, as shown in Fig. 16.8. When Cs’ willingness
to change is low or absent (c¢ = 0.5 and o¢ = 0.0) compared to Ds (op = 1.0),
Cs’ chances decrease with respect to the situation in which Cs and Ds react equally
swift to adverse ties (¢ = op = 1.0). Comparing these results with those in which
all social ties remain immutable (cc = op = 0.0) does, however, show that the
rewiring of DD links alone is already beneficial for cooperation.

The rewiring of links, no matter which ones, creates heterogeneous networks
that are known to provide cooperators with an environment in which they may
acquire an advantage over defectors. Thus, even when cooperators are resilient to
change, their behavior prospers at the expense of defectors’ greed.

From these results, one might expect that swift reaction to adverse social ties will
evolve when ¢ is considered as an evolutionary trait. This intuition does, however,
not always hold. We start each evolutionary run by selecting each individual’s
o from a uniform distribution. We analyze the distribution of o at the end of
the evolutionary process, when the population reaches fixation (i.e., all individuals
adopt the same game strategy). The lines in Fig. 16.9 correspond to the cumulative
distribution C(o) of o (C(0g) being defined as the fraction of individuals with
o > og) for both C' (solid lines) and D individuals (dashed lines). The initial
distributions of ¢ lead to the black diagonal line; the final distributions are shown for
different values of the game parameter T'. In the regime where cooperators dominate

WIS~~~ ~ ()
NN
(AN
0.8 - \ A o,
\ 08 @
\\ =
0.6
\| 0.6 %
C(o) \\ 04 =S
0.4 \\ =X
«()® Initial distribution 0.2 9
02 | @@®T=15 0.0
T | eemT=18 15 2.0 2.5
@ T=21 T(S=1-T)
0.0 | ®®)® T=24
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
o

Fig. 16.9. Evolution of o for cooperators and defectors. The solid (dashed) lines show the fraction
of cooperators (defectors) having an eagerness to change links larger than o, and this for different
values of T (W =5, 8 = 0.005, N = 103, 2 = 30). The inset provides the fraction of runs ending
in 100% of cooperators as a function of T. The values of ¢ are uniformly distributed in [0, 1] at
the start of each evolution, as indicated in black. Cooperators that react swiftly to adverse ties
are only favored by natural selection when defectors start to become competitive (1.8 < T < 2.1).
Swift defectors, on the other hand, are always selected, but the strength of this selection pressure
drops as T increases. C(og) is defined as the fraction of individuals who have o > og.
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(T < 1.8), the incentive to change is low since many social ties rely on mutual
satisfaction. Hence, the distribution of o over all individuals hardly changes. For
higher values of T' (1.8 < T < 2.1) a transition occurs from cooperator dominance
to defector dominance. Competition becomes fierce and it pays to respond swiftly
to adverse ties, as evidenced by an increase of C'(o) in Fig. 16.9. Ds are, however,
subject to a much stronger pressure to change their links than Cs, since they can
never establish social ties under mutual agreement. Thus, only Ds with high o
survive. As a consequence, defectors end up to react promptly to adverse ties,
whereas cooperators will always be rather resilient to change. For even larger values
of T (> 2.1), defection dominates and evolutionary competition of linking dynamics
fades away. As a result, the incentive to increase swiftness reduces, a feature which
is indeed reflected in the behavior of C(o).

16.5. Discussion

Our analysis has been limited to one-shot games. In other words, individuals in-
teract once during the lifetime of a link as if they have never met before. But
in repeated interactions, more possibilities exist. If I only take into account your
behavior in the last interaction, there are already 22 = 4 strategies. Since the num-
ber of strategies grows rapidly with memory [Lindgren (1991); Ebel and Bornholdt
(2002b)], one often considers so called trigger strategies in which individuals keep
their behavior unchanged until they are faced with an unsatisfactory partner for the
first time. Such strategies can be implemented into our active linking framework,
assuming that individuals act repeatedly as long as a link between them is present.
This procedure leads to analytical results for evolutionary stability under active
linking even in the context of repeated games [Pacheco et al. (2008)].

Other studies have shown numerically that network dynamics can significantly
help dominated strategies. Even if only the dominant strategy can locally affect the
network structure, this can help the dominated strategy under certain linking rules
that put restrictions on mutual interactions of the dominant strategy [Zimmermann
et al. (2005); Zimmermann and Egufluz (2005); Biely et al. (2007)]. A recent study
for growing networks has shown that the defectors in the PD have an advantage as
long as a network is growing by preferential attachment. Once network growth is
stopped, the cooperator strategy increases in frequency [Poncela et al. (2008)].

To sum up, by equipping individuals with the capacity to control the number,
nature and duration of their interactions with others, we introduce an adaptive
network dynamics. This leads to surprising and diverse new game dynamics and
realistic social structures. We have presented approaches of how to implement net-
work dynamics. The first one, active linking, allows to define differential equations
for the numbers of links, which leads to analytical results. The second approach, in-
dividual based linking dynamics, is implemented numerically and leads to network
features of empirical social networks. Both cases provide a clear and insightful
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message: co-evolution of population structure with individual strategy provides an
efficient mechanism for the evolution of cooperation in one-shot dilemmas. More-
over, if the willingness to sever undesirable connections is also regarded as part of
the individual strategy, the same principles provide an evolutionary basis for the
decision of adjusting social ties. For example, in the PD cooperators evolve to main-
tain their interactions. But defectors are forced to seek new partners frequently,
because long term relationships with defectors are undesirable.

The consideration of adaptive social networks is an important step towards more
realistic models of social interactions in structured populations. Coupling the dy-
namics on networks with the dynamics of networks leads to emergent new phenom-
ena outside the classical considerations of social dynamics on static networks.
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