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Abstract

The fact that the founding papers of Density Functional Theory are among the most cited

papers ever, testifies for the importance of Quantum Mechanics and its (often) counter intuitive

features in characterizing many-particle systems at a nano and sub-nano scale. Density Functional

Theory has enabled one to use the computer to predict quantitatively several of the properties

of the aforementioned many-particle systems. The prediction of new materials, often exhibiting

meta-stability, is one of its distinctive features. In this lecture we will discuss a new class of meta-

materials which, being silicon based, exhibit properties which in no way resemble those of its main

constituent. In particular, we will discuss the structural and electronic properties of new materials

of the form X@Si16 (with X=Ti,Zr and Hf) which are predicted to be (meta) stable at room

temperature and exhibit a remarkable potential as possible high-Tc superconductors.

PACS numbers: 61.46.-w, 36.40.-c, 71.20.Tx, 81.05.Tp
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I. INTRODUCTION

A fundamental challenge for nanotechnology is to control fabrication with atomic preci-

sion in order to assemble new materials with outstanding properties or functions. Modern

theoretical and computational methods are already able to predict the properties of such

materials. The importance of this has been recognized with the 1998 Nobel Prize award to

Walter Kohn for his development of the Density Functional Theory1,2 (DFT) and to John

Pople for his development of computational methods in quantum theory. Today, theoreti-

cal predictions are competitive with experimental techniques for controlling single molecule

chemistry given that the required hardware for performing computer simulations is often

orders of magnitude cheaper and may be more effective than experiments. The quantitative

predictions based on DFT rely on Quantum Mechanics which itself is on the basis of the

technological revolution of the XXth century.

Much of what is considered now the information technology revolution has been de-

pendent of an ever increasing miniaturization of devices based on silicon. The number of

transistors that can be placed in an integrated circuit, which is a measure of its computing

power, has doubled every 20 months since 1971. However, physical limits to miniaturization

of devices based on bulk silicon have already been met in the recent 45 nm generation of

devices, where a high-k dielectric material like HfO2 has replaced SiO2 as a gate insulator3

for the first time since the beginning of the integrated circuit. The potential ”brick wall”

facing Moore’s Law4 has motivated an incredible amount of experimental and theoretical

work in the search for alternative materials to bulk silicon. Silicon clusters in particular

have been under focus, given that nano-structured materials are known to exhibit very dif-

ferent properties from their bulk counterparts. But contrary to fullerene-like carbon clusters,

pure silicon clusters have been found to be chemically reactive, precluding the synthesis of

cluster assembled materials5. Along another route, early experiments by Beck6,7 indicated

the feasibility of using metal atoms to nucleate several silicon atoms into stable X@Sin

clusters, of which X@Si16 was found to be particularly stable. Recent experimental5,8–15

and theoretical16–24 work has confirmed these results for a variety of mixed metal-silicon

sandwich8,25 and cage16,17,23,24 clusters, and a special class of clusters with stoichiometry

X@Si16, with X a metal atom, has been identified16 as especially stable by means of ab-

initio computer simulations. In particular, the stability of X@Si16 (X = Ti, Zr,Hf) nano
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particles has been confirmed experimentally13, via selective formation of neutral gas phase

clusters, using a dual laser vaporisation technique of pure metal and pure silicon targets in an

inert helium atmosphere. An additional experimental confirmation of the synthesis of these

nano-particles has been reported recently using a magnetron co-sputtering tecnhique15.

Using first-principles computer simulations within DFT we investigate the main electronic

properties ofX@Si16 (X=Ti,Zr and Hf) clusters. The vibrational modes and infrared spectra

are also determined. We show the feasibility of using the clusters as elementary building

blocks to synthesize stable bulk materials, and find that all the X@Si16 (X=Ti, Zr and

Hf) cluster-assembled materials crystallize in hexagonal closed packed structures (HCP).

We further characterize the main structural and electronic properties of these materials,

while illustrating their differences. We predict that these materials should be possible to

stabilize in a metastable phase at room temperature and normal pressure conditions. This

phase is predicted to be maintained under isotropic compression up to ∼ 1 GPa. Similar to

Ti@Si16, both Zr@Si16 and Hf@Si16 are especially stable semiconductors with GGA (see

below) band gaps of 1.6 eV, 0.3 eV larger than that previously found for bulk Ti@Si16.

This paper is organized as follows: In section two details of the method and simulations

carried out are provided. Results and discussion are left to section three, whereas the main

conclusions and future prospects are postponed to section four.

II. METHODS

All ab-initio calculations were performed within the generalized gradient approximation

(GGA27) to DFT using norm-conserving pseudopotentials26,28 and a plane-wave basis29,30.

An energy cut-off of 30.0 Hartree (816 eV) was used throughout, leading to well converged

forces within 0.02 eV/Bohr. This value was also used as a stopping criteria for structural op-

timizations. Large energy cutoffs are crucial to ensure reliable results (and good convergence

of the forces). We note that if less restrictive (and consequently, less computer demanding)

parameters are used in structural optimizations, the forces (gradients of the energy with re-

spect to atomic positions) will be poorly determined. As a consequence artificial structures

and cage breakup can be obtained using X@Si16 clusters as building blocks.
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A. Isolated Clusters

1. Structural optimization

The atomic coordinates of the isolated clusters were computed employing a super-cell

hexagonal lattice with parameters a = c = 27.0 Bohr to avoid mirror-image interactions. To

ensure proper structure determination we performed several Langevin Quantum Molecular

Dynamics31 (LQMD) simulations at different temperatures starting from arbitrary config-

urations of Si atoms always nucleated around the central metal atom. Subsequently we

performed geometry optimizations employing a conjugated gradient algorithm starting from

the lowest energy configurations obtained in the LQMD runs.

2. Electronic properties

We computed the total energy, the one-electron Kohn-Sham levels as well as the total

valence electronic density ρ(r) of each nano-structure at the equilibrium configuration. From

the electronic density ρ(r) we constructed the radial electronic density, ρ(r) = ρ(|r|) by

calculating its average over the solid angle:

ρ(r) =
1

4π

∫
Ω
ρ(r)dΩ

The number of valence electrons is given by:

N =
∫
d3rρ(r) =

∫ ∞
0

dr4πr2ρ(r) ≡
∫ ∞

0
drη(r) (1)

The quantity η(r) defined in the last integral can be useful in quantifying the electronic

density inside the nanoparticle, providing a qualitative measure of its chemical inertia.

We computed the cohesive energy per atom for each cluster subtracting from the to-

tal energy Etot the atomic energies ESi
ps and EX

ps (X = Ti, Zr,Hf) of the pseudopotential

calculation, Ecoh = (Etot − 16ESi
ps − EX

ps)/17.

3. Vibrational modes and infrared spectrum

The vibrational modes of frequency ω are described by a periodic displacement in time

of each nuclei I:

uI (t) = uIe
iωt
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This leads to the following eigenvalue equation:

−ω2MIuI =
∑
J

∂2E (R)

∂RI∂RJ

uJ

which involves second order derivatives of the ground state energy E (R) with respect to all

N nuclei positions RI (I = 1, · · · , N). Solving these equations leads to a set of frequencies

ων (ν = 0, · · · , 3N) and corresponding normal modes uν = uντ,αeα involving the collective

displacements of the nuclei (τ = 0, · · · , N) along the Cartesian directions (α = x, y, z).

The absolute infrared intensity of the mode ν is given by32:

IIRν = K

∣∣∣∣∣∣
∑
τ,α,β

Z∗τ,α,βu
ν
τ,β

∣∣∣∣∣∣
2

with τ = 1, · · · , N and α, β = x, y, z. For intensities in (D/Å)2amu−1 and Z in atomic units

K = 4.2056×104. The Born effective charge tensor Z∗ is the second derivative of the energy

with respect to both the electric field G and the nuclei displacement Rτ :

Z∗τ,α,β =
∂2E

∂Gα∂Rτ,β

The second order derivatives of the ground state energy, with respect to atomic displacements

and/or homogeneous electric fields are computed using density functional perturbation-

theory (DFPT)33,34.

B. Bulk phase

1. Structural optimization

In a first step, we investigate bulk forms of cluster assembled materials, using the equi-

librium structures of the isolated cages. To this end, we computed the cohesive energy per

cluster varying the distance between clusters in a given bulk structure, while freezing the

cluster geometry and the angles between primitive lattice vectors. The cohesive energy per

cage in the bulk Eb
coh is defined:

Eb
coh = (Eb

tot −NcEI)/Nc

where Eb
tot is the total energy per untit cell, EI is the energy of the isolated cluster and

Nc is the number of clusters in the unit cell. Several bulk structures were investigated:
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Simple Cubic (SC), DIAmond-type (DIA), Body Centered Cubic (BCC), Face Centered

Cubic (FCC) and Hexagonal Close Packed (HCP). We placed 1 cluster per unit cell in the

SC, BCC and FCC structures, and 2 in DIA and HCP. We have also tried to use supercells

for the different lattices but the corrections in energy were found to be negligible. We have

carefully chosen the k-point sampling in each calculation (particularly for small inter-cluster

distances) in order to ensure well converged results. We used the following Monkhorst-Pack

grids: 2x2x2 for DIA, 4X4X4 for SC, BCC and FCC and 3x3x2 for HCP.

Subsequently we performed a full geometry relaxation of both atomic coordinates and

lattice parameters taking as a starting point the configuration corresponding to the minimum

of the cohesive energy per cluster as a function of distance between clusters for the different

bulk structures we found before.

2. Pressure curve and bulk modulus

Given the cohesive energy per cluster as a function of the distance d between clusters,

Ecoh(d), we can obtain the pressure as a function of inter-cage distance P (d) by computing

the numerical derivative from a cubic spline fit to the cohesive energy points:

P (d) = −∂E
∂V

= −∂E
∂d

(
∂V

∂d

)−1

For a hexagonal lattice in the ideal packing structure (HCP), the volume of the primitive

cell is V =
√

2d3. Thus:

P (d) = − 1

3
√

2d2

∂E

∂d
= −254.845

d2

∂E

∂d
, (2)

which provides the pressure in GPa for lengths in Bohr and energies in eV. The Bulk modulus

B is determined by fitting the cohesive energy points to the Birch-Murnaghan equation of

state35:

E(V ) = E0 +
9V0B0

16


(V0

V

) 2
3

− 1

3

B′0 +

(V0

V

) 2
3

− 1

2 6− 4
(
V0

V

) 2
3


 (3)
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III. RESULTS AND DISCUSSION

A. Isolated Clusters

The structures of the isolated X@Si16 nano-particles obtained using the procedure out-

lined in the previous section are shown in figure 1.
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FIG. 1: (Color online) The Frank-Kasper36 cage-structures, corresponding to the equilibrium of

the X@Si16 nano-particles. These highly symmetric structures, exhibiting several C3 symmetry

axes, will be used as building blocks of molecular solids. Selected bond angles are also represented.

Angle values are given in Table I.

TABLE I: Selected bond angles depicted in figure 1 for the X@Si16 clusters (X = Ti, Zr,Hf).

Similar values for the angles have been identified in amorphous Silicon37.

X@Si16 a b c d e f g

T i 54.6◦ 62.7◦ 60.0◦ 53.1◦ 63.4◦ 120.0◦ 106.4◦

Zr 54.0◦ 63.0◦ 60.0◦ 52.6◦ 63.7◦ 120.0◦ 108.4◦

Hf 54.0◦ 63.0◦ 60.0◦ 52.6◦ 63.7◦ 120.0◦ 108.4◦

All these nano-particles exhibit Frank-Kasper36 cage structures with C3v symmetry. In

Table II the parameters characterizing the structural properties of these clusters are given.

We choose three sets of distances: The distance from the metal atom to the four silicon
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atoms on the tetrahedral sites r1; the distance from the metal atom to the remaining twelve

silicon atoms r2, and the minimum nearest neighbour Si-Si distance rnnmin. The Zr@Si16 and

Hf@Si16 have larger dimensions than Ti@Si16: r1 and r2 are 3% and 1% larger than the

ones found for Ti@Si16.

TABLE II: Structural parameters for the X@Si16 clusters with X = Ti, Zr,Hf . r1 is the distance

from the metal atom to the four silicon atoms on the tetrahedral sites, r2 is the distance of the

metal atom to the remaining twelve silicon atoms and rnnmin is the minimum nearest neighbour Si-Si

distance.

X@Si16 r1 (Bohr) r2 (Bohr) rnnmin

Ti 4.93 5.34 4.49

Zr 5.09 5.40 4.54

Hf 5.09 5.40 4.54

TABLE III: Cohesive energy per cluster and HOMO-LUMO gaps for the X@Si16 clusters with

X = Ti, Zr,Hf .

X@Si16 Ecoh/Atom (eV) H − L Gap (eV)

Ti -4.96 2.3

Zr -4.99 2.4

Hf -4.97 2.5

Once the ground state geometries have been determined, we computed their main elec-

tronic properties. In Table III we list the calculated cohesive energy per atom and HOMO-

LUMO (Highest Occupied - Lowest Unoccupied Molecular Orbital) gap for these clusters.

Whereas the cohesive energies are almost identical for all cages the Zr@Si16 Hf@Si16 gaps

are ∼ 6% larger than the one found for Ti@Si16.

In figure 2 we show the radial electronic density of all the three clusters, which is remark-

ably similar. Besides their large HOMO-LUMO gaps, another indication of stability in these

clusters is that almost all of the electronic density is concentrated inside the cage clusters.

The vertical bars represent the outer limits of the cage-cluster, taking into account the cage

radius and the silicon atomic radius (cf. Table 2). ∼ 96% of the electronic charge density
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FIG. 2: (Color online) Normalized radial electronic densities η(r) = 4πr2ρ(r) plotted as a function

of the distance to the central metal atom for isolated clusters Ti@Si16 (orange, solid line), Zr@Si16

(red, dash-dotted line) and Hf@Si16 (brown, dashed line). The radial electronic density ρ(r) is

obtained from the calculated ground state total electronic density ρ(r) taking its average over the

solid angle Ω. See Eq. (1). The total area subtended by each curve is 1.

is concentrated inside a sphere of radius 8 Bohr, suggesting a remarkable level of chemical

inertia.

In figure 3 we display the one-electron energy levels. The three nanoparticles exhibit

energy level distributions which are qualitatively similar. The degeneracies of the energy

levels can be qualitatively organized in the following sequence:

2, 6, 10, 2, 14, 6, 18, 10 .

This sequence is in excellent agreement with that resulting from a spherical-like (jellium)

super-atom:

s, p, d, s, f, p, g, d .

Hence, and on top of a structurally stable and highly symmetric cluster, the 68 valence

electrons of each cage cluster also organize into into a spherical closed-shell electronic system.

Consequently these cages qualify as ”double magic”.

In figure 4 we show the results of the calculation of the infrared spectrum using the

procedure described in the previous section. In all three cases the normal modes have
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FIG. 3: (Color online) Energy levels for the X@Si16 clusters with X = Ti, Zr,Hf . The electronic

occupancy of each level is 2. The plotted levels are grouped according to their approximated

degeneracies corresponding to levels in a spherical (jellium) shell structure with angular momenta

s, p, d, s, f, p, g, d.

frequencies which are low compared to the fullerenes, exhibiting sizable intensity∼ 200 cm−1.

This picture is consistent with a weaker bonding of the silicon atoms in the X@Si16 (X=Ti,

Zr and Hf) nanoparticles compared to the carbon atoms in the fullerene clusters. The IR

spectrum for Ti@Si16 depicted in the upper panel of figure 4 is nearly identical to the one

obtained by Nakajima and coworkers14 using a localized basis set method. One interesting

feature apparent in figure 4 is a progressive softening of the frequency spectrum with the

increasing mass of the central metal atom. This is accompanied with a simultaneous decrease

in IR activity which is most pronounced for Hf@Si16.

The peaks of highest intensity at 380 cm−1 and 360 cm−1 for Ti@Si16 and Zr@Si16

respectively correspond to the three normal modes depicted in the upper part of each panel

of figure 5. In the case of Ti@Si16 these are essentially displacements of the central metal

atom in the cluster with minor rearrangements of the surrounding silicon atoms. For the

Zr@Si16 the movement of the central metal atom is accompanied by a more sizable distortion
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FIG. 4: (Color online) The calculated infrared spectrum of the X@Si16 (X=Ti, Zr and Hf) nano-

particles.

of the silicon cage. This is also the case for the three modes corresponding to the second

most intense peak for both Ti@Si16 and Zr@Si16 at 246 cm−1 and 205 cm−1 respectively.

In the case of Hf@Si16 the peak of highest IR activity is located at 180 cm−1. These modes

are depicted in the upper part of figure 6 whereas the second most intense peaks correspond

to the six normal modes depicted in the lower part of figure 6.

B. Bulk phase

We investigate now the possible stability of bulk forms of the cluster assembled materials.

We restrict our analysis to the Frank-Kasper36 cage structures even though we are aware that

other isomers of M@Si16 have been reported in the literature16,21,22. However no structure
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FIG. 5: (Color online) Selected normal modes for the Ti@Si16 (uppper panel) and Zr@Si16 (lower

panel) nanoparticles. In each panel the three top modes correspond to the peak of highest IR

activity whereas the lower three modes correspond to second most intense peak.
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Hf

FIG. 6: (Color online) Selected normal modes for the Hf@Si16 nanoparticles. The three top modes

correspond to the peak of highest IR activity whereas the lower six modes correspond to second

most intense peaks.

of comparable stability has been identified to date with stoichiometry M@Si16. Hence we

believe this choice is justified. The existence of a C3v axis in the Frank-Kasper36 structure

may favour the HCP structure, since C3v is the point symmetry group of the crystallographic

P3m1 hexagonal group; nonetheless we investigated other possibilities. In figure 7 we plot
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the cohesive energy per cluster as a function of cage-cage distance for the three cluster

assembled materials in their different bulk structures - SC, DIA, BCC, FCC and HCP. In

all cases, the cohesive energy curves for the SC, BCC, and FCC structures exhibit well

defined minima around 17 Bohr. They are, however, less stable than the HCP structure.

An entirely different behaviour is found for the DIAmond structure indicating that in all

cases this structure is unstable. In figure 8 we show in detail the cohesive energy curves for

the three cluster assembled materials in the HCP structure. The curve for HCP Ti@Si16

has a minimum for a cage-cage distance of 16.54 Bohr and a value at the minimum of only

−0.2 eV indicating that the cages bind weakly. The significant reduction of the binding

compared to fullerite38 (cohesive energy per cluster of −1.6 eV ) is related to the role played

by the central metal atom which effectively pulls the valence charge density to within the

cage, increasing not only the cluster structural stability but also the HOMO-LUMO gap

therefore reducing its chemical reactivity. The curves for Zr@Si16 and Hf@Si16 have

minima at cage-cage distances of 17.2 Bohr and 17.1 Bohr respectively. The inter-cage

distance in these two structures is ∼ 4% larger than the one found for HCP Ti@Si16. The

values of −0.14 eV and −0.15 eV at the minimum also indicate that the binding in these

bulk materials is weaker than in the bulk Ti@Si16. These results correlate with the fact that

both Zr@Si16 and Hf@Si16 nanoparticles have a cage radius ∼ 3% larger than Ti@Si16.

Indeed, a larger cage radius induces an increase of the inter-cage distance for the cluster

assembled materials and also a decrease of the binding between clusters given that the same

electronic charge is spread in a larger cluster volume.

Relaxation of both the internal cluster coordinates and the lattice parameters starting

at the minimum structures of figure 8 leads to HCP structures characterized by the lattice

parameters summarized in Table 4. The atomic rearrangements within each cluster are

negligible compared to the isolated cluster geometry, the same applying to the overall changes

in cohesive energies. The orientation of the clusters in the Zr@Si16 and Hf@Si16 HCP

structures is compatible with the p3m1 crystallographic group and identical to that of

Ti@Si16 in Ref. [25] where it has been explicitly illustrated.

figure 8 also reveals that, despite the well developed minima in the cohesive energy per

cluster, these minima are separated by barriers from other equilibrium structures26, which

turn out to be more stable.

Similar to what was found for Ti@Si16
26 these systems will relax to an amorphous struc-
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FIG. 7: (Color online) Cohesive energy as a function of inter-cage distance for bulk structures of

X@Si16 clusters with X = Ti, Zr,Hf . For all crystal structures, nearest neighbor cages are all

at the same distance from any focal cage (for the HCP structure (c/a =
√

8/3, see main text for

details). The curves for the HCP, FCC, BCC and SC are drawn with solid lower (black), solid

upper (blue), dashed (red) and dotted (green) lines, respectively. The only curve which exhibits

no bound state corresponds to the DIA structure, drawn with a (black) dotted line.

ture where silicon atoms of neighbouring cages bind covalently when subject, e.g., to very

high pressures. This covalent binding leads to an absolute increase of the cohesive energy

per cluster to −2.2 eV . However from figure 8 it is apparent that the values of the barrier

maxima for both Zr@Si16 and Hf@Si16 are larger than the 0.16 eV found for Ti@Si16.

This translates into an increase in the applied pressure necessary to drive the Zr,Hf@Si16

bulk materials away from their metastable equilibrium HCP structure. Fully unconstrained

geometry relaxations, varying both the cluster coordinates and unit cell parameters, starting
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FIG. 8: (Color online) Cohesive energy as a function of inter-cage distance for the HCP molecu-

lar solids Ti@Si16 (orange, solid line), Zr@Si16 (red, dashed-dotted line) and Hf@Si16 (brown,

dashed line).

TABLE IV: Lattice parameters for the X@Si16 HCP molecular solids with X = Ti, Zr,Hf . ∆ is

the deviation of the ratio of lattice parameters c/a from the ideal packing value
√

8/3.

X@Si16 a (Bohr) c (Bohr) ∆ (%)

Ti 16.54 27.13 0.5

Zr 17.11 27.94 0.01

Hf 16.93 28.14 1.8

from a configuration significantly compressed with respect to the equilibrium HCP configu-

ration show no sign of amorphous transition at normal temperature.

In figure 9 we plot the pressure as a function of inter-cage distance for the three

X@Si16, X = Ti, Zr,Hf bulk materials using the data from the cohesive energy curves

and Eq. (2). We found that the maxima of the pressure curves are 0.87 GPa for bulk

Zr@Si16 and 0.85 GPa for bulk Hf@Si16, values ∼ 8% larger than the 0.79 GPa obtained

for the bulk Ti@Si16 indicating that both bulk Zr@Si16 and Hf@Si16 are more stable than
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FIG. 9: (Color online) Computed pressure as a function of inter-cage distance for the HCP molec-

ular solids Ti@Si16 (orange, solid line), Zr@Si16 (red, dash-dotted line) and Hf@Si16 (brown,

dashed line). The curves were obtained by computing the numerical derivative of the cubic spline

fit to the cohesive energy points used to plot figure 8. See Eq. (2).

TABLE V: Bulk modulus for the X@Si16 HCP molecular solids with X = Ti, Zr,Hf .

X@Si16 Bulk Modulus (GPa)

Ti 1.25

Zr 0.90

Hf 0.97

bulk Ti@Si16 against applied pressure. The values for the bulk modulus B, obtained by

fitting the Birch-Murnaghan equation of state, Eq. (3), to the cohesive energy points are

given in Table V.

Quantum Langevin molecular dynamics (QLMD) simulations31, starting at the Ti@Si16

HCP equilibrium structure, suggest that the HCP phase is probably stable at room temper-

ature, as shown in figure 10. QLMD simulations provide a very efficient test of the overall

stability of the system, given the feasibility of observing the occurrence of structural phase
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FIG. 10: (Color online) Upper Panel: Change of total energy per cage (with respect to equilib-

rium HCP configuration) as a function of time for a variable cell-shape quantum Langevin molecular

dynamics of bulk-Ti@Si16. Simulation started from the HCP structure at a temperature of 300

K. Lower Panel: Time dependence of the percentual deviation (with respect to the equilibrium

value) of the average radius of each cage. The results show the small amplitude of the oscillations

taking place at room temperature, and suggest the probable stability of this material. The time

step used in each iteration is 2× 10−15 sec, and the simulation ran for a total of 2× 10−12 sec.

transitions, whenever they actually take place. QLMD combines some of the advantages of

Metropolis Monte Carlo (MC) and MD simulations. By exploiting the energy gradient the

atoms move collectively to the minima thereby efficiently sampling the configuration space.

This is generally more efficient than a MC procedure where the position of a single atom

is updated at each step, followed by a recalculation of the energy. The evaluation of the

gradients of the energy, i.e atomic forces and stress are performed at almost no cost once

the energy is determined.
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The startting point of the simulation is the equilibrium HCP structure previously deter-

mined. Each atom was given an average initial kinetic energy corresponding to a temperature

of 300 K. Throughout the simulation the system was in contact with a heat bath at a con-

stant temperature of 300 K. In the top panel we depict the energy difference (per cage, in

eV) between the actual configuration at time t and the equilibrium configuration, where

one can observe small oscillations around an average energy value reflecting the fact that

the crystal is at finite temperature.In the lower panel we depict the time dependence of

the deviation from the equilibrium value of the average cage radius (in percentage). Both

numbers illustrate the small amplitude nature of the oscillations taking place39.

Finally in figure 11 we show the calculated band structures for the three bulk structures

determined above. All three molecular solids are semiconductors with indirect band gaps of

1.3 eV (Ti@Si16) and 1.6 eV (Zr@Si16 and Hf@Si16).

IV. CONCLUSIONS

Making use of first principles computer simulations in the framework of DFT, we have

investigated the main structural and electronic properties of the isovalent X@Si16 (X =

Ti, Zr,Hf) nano-particles. We showed the feasibility of using these remarkably stable clus-

ters to synthesize molecular solids and we characterized their main structural and electronic

properties. Similar to bulk Ti@Si16, we found that bulk Zr@Si16 and Hf@Si16 also crystal-

lize in HCP structures with ∼ 4% larger inter-cage distance, compared to HCP − Ti@Si16.

These bulk materials have a phase stability under isotropic compression up to ∼ 1 GPa and

bulk modulus also ∼ 1 GPa. Fully unconstrained LQMD simulations of the bulk structures

suggest their stability at room temperature and normal pressure. Our calculations lead to

band gaps of 1.6 eV for Zr@Si16 and Hf@Si16. Taking into account that GGA systemati-

cally underestimates semi-conductor band gaps it is likely that the true band gap is larger

than 2 eV .

The results obtained here suggest an interesting hierarchical rationale for the design of

cluster assembled materials. Starting from the well known properties of the atoms, one can

design target nanoparticles with pre-defined properties which, as such, are the constituent

elements of new bulk materials. Furthermore, as shown here, when the nano-cage nucleates

around a central atom, one can use at profit the size of the nucleating atom - via isovalent
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FIG. 11: (Color online) Calculated band structures of bulk X@Si16 with X = Ti, Zr,Hf . These

molecular materials are predicted to be indirect gap semiconductors. Both Zr@Si16 and Hf@Si16

have larger band gaps than Ti@Si16.
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replacement - to manipulate the cage size and, consequently, the bulk lattice, with direct

implications on the band gap. This provides an additional degree of freedom which may prove

very useful in, e.g., the quest for nano-designed, superconducting alloys. Taking fullerite as

a model template, to the extent that doped bulk-X@Si16 is superconducting, changing the

doping element and the nucleating nano-cage atom may provide additional laboratory knobs

to tune the superconducting gap. The existence of low frequency intramolecular modes is

another strong indicator that appropriately doped bulk-X@Si16 can exhibit a remarkable

potential as possible high-Tc superconductors. Ongoing calculations of the electron-phonon

coupling to these nodes seem to support this. Additionally, the superconducting transition

temperature of hypothetical doped bulk materials based on the X@Si16 nanoparticles can be

accurately predicted by means of computer simulations within the framework of the Migdal-

Eliashberg40–42 theory of phonon mediated superconductivity coupled to DFT. Work along

these lines is in progress. We further hope that our results stimulate experiments aiming at

synthesizing these materials in the lab13,15.
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