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Abstract. In the natural world, performing a given task which is benefi-4

cial to an entire group requires the cooperation of several individuals of5

that group who often share the workload required to perform the task.6

The mathematical framework to study the dynamics of collective action7

is game theory. We study the evolutionary dynamics of cooperators and8

defectors in a population in which groups of individuals engage in N -9

person, non-excludable public goods games. We analyze the N -person10

Prisoner’s dilemma (NPD), where the collective benefit increases pro-11

portional to the cost invested, and the N -person Snowdrift game (NSG),12

where the benefit is fixed but the cost is shared among those who con-13

tribute. We impose the existence of a threshold which must be surpassed14

before collective action becomes successful, and discuss the evolution-15

ary dynamics in infinite and finite populations. In infinite populations,16

the introduction of a threshold leads, in both dilemmas, to a unified17

behavior, characterized by two interior fixed points. The fingerprints of18

the interior fixed points are still traceable in finite populations, despite19

evolution remaining active until the population reaches a monomorphic20

end-state. As the group size and population size become comparable,21

we find that spite dominates, making cooperation unfeasible.22
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1. Introduction27

The last decades have witnessed the discovery of key insights into the emer-28

gence and sustainability of cooperation at different levels of organization29

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Special attention30

has been paid to two-person dilemmas such as the Prisoner’s Dilemma (PD)31

[18, 19], the Snowdrift Game (SG) [20] and the Stag-Hunt game (SH) [16],32

which constitute powerful metaphors to describe conflicting situations often33
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encountered in the natural and social sciences [5, 16]. Many real-life situa-1

tions, however, are associated with collective action based on joint decisions2

made by a group often involving more than 2 individuals. This is the case, for3

instance, in the upper primates, where problems of collective action are re-4

current [2, 21]. These types of problems are best dealt-with in the framework5

of N -person games [22, 23, 24, 25, 26, 27, 28]. The crossover from two-person6

games to N -person games brings along additional difficulties, similar to what7

one observes in the physical sciences when moving from the study of interac-8

tions between two particles and those involving many particles. The impact9

of this additional complexity in the context of biology has been well-captured10

by the words of W. D. Hamilton [29]:11

“The theory of many person games may seem to stand to that of12

two-person games in the relation of sea-sickness to a headache.”13

The prototypical example of a Public Goods Game (PGG) is captured14

by the so-called N -person PD (NPD). It involves a group of N individuals,15

who can be either Cooperators (C) or Defectors (D). Cs contribute a cost “c”16

to the public good, whereas Ds refuse to do so. After all individuals are given17

the chance to contribute, the accumulated contribution is multiplied by an18

enhancement factor “F”, and the total amount is equally shared among all19

individuals of the group. In other words, if there are k Cs in a group of N20

individuals, Ds end up with kFc/N , whereas Cs only get kFc/N − c, that is,21

in mixed groups Cs are always worse off than Ds.22

Group hunting provides an excellent example of this type of setting.23

From lionesses in Etosha National Park, Namibia [30], to Chimpanzees in the24

Tai forest [31] and African wild dogs [32], group hunting, being ubiquitous,25

usually requires, to be effective, the joint action of at least a minimum number26

of animals. Of course, the more individuals participate, the more effective the27

hunting will be. In animals, other collective actions, such as lions defending28

a kill against a pack of hyenas, can also be seen as generalized Stag Hunt29

games [33]. In human affairs we also find collective action problems that can30

be viewed as generalized Stag hunts, not only in literal hunts such as the31

whale hunts discussed in [34], but also in international relations [35] and32

macroeconomics [36].33

Despite their abundance, N -person generalizations of the Prisoner’s34

Dilemma and the Stag-Hunt games do not exhaust the spectrum of collective35

action dilemmas encountered in the natural and social phenomena. Indeed,36

generalized snowdrift games appear all too often. In the standard SG, two37

individuals are driving on a road which is blocked by a snowdrift. To proceed38

with their journey home, the snow must be removed. Three possibilities oc-39

cur: No-one shovels, and hence no-one gets home: The two drivers cooperate40

and shovel, and both get home, each one sharing the workload of shoveling41

the snow. If only one driver decides to shovel, both get home despite one42

driver incurring the entire cost of snow shoveling. If we define the benefit of43

getting home as b and the cost of shoveling as c, then if both drivers coop-44

erate and shovel, each gets b − c/2. If both defect, no one gets anything: 0.45
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If one cooperates and the other defects, the Cooperator (C) gets b− c while1

the defector (D) gets b. Assuming, as usual, that the benefit is greater than2

the cost, we get a payoff ranking characteristic of a chicken, hawk-dove or3

snowdrift dilemma [6]. The generalization of this game to a public goods4

game involving N players is straightforward. To remain with the previous5

example, we can imagine that the snowdrift occurs at a cross-road where N6

drivers meet. Again, all want to go home (getting all the same benefit b), but7

perhaps not all are willing to shovel. If all shovel, then each gets b−c/N . But8

if only k individuals shovel (C), they get b − c/k whereas those who defect9

by refusing to shovel get home for free and get b.10

Similar to group hunting, however, it is often the case that no common11

benefit is produced unless its cost is shared by a minimum threshold of co-12

operating individuals. In keeping with the metaphor introduced above, the13

fact that individuals have a finite capacity of clearing the snow, may lead to14

the requirement of a minimum threshold of people to cooperate (shovel) so15

that the road is cleared.16

The existence of thresholds inNSG abounds. For example, not all Amish17

need to participate in the construction of a church for the church to be built18

(see, e.g., the movie Witness, directed by P. Weir (1985)). Yet, the more19

contribute the better, since the effort to be invested by each member of the20

construction group will be smaller. On the other hand, the cost of building a21

church cannot be provided by a single individual. In this example, the public22

good is the church. Note, further, that the size of the church, or the benefits23

of having one, do not necessarily increase with the number of individuals that24

worked on it. Similar settings apply whenever individuals act collectively to25

setup sandbag levees to prevent river flooding.26

Hence, as with the NPD, the need for collective coordination in the27

NSG introduces a behavioral tension common to conventional coordination28

games [15, 16]: if the others do their work, it might be profitable to do it as29

well; otherwise you definitely gain from opting out.30

Mathematically, this means that for a given group of size N , we define31

a threshold 1 ≤ M ≤ N such that only when the number k of Cs in the32

group is at least M (k ≥ M) a public good is achieved. In all cases, a cost33

c must be paid before a common benefit b is produced. For the NPD, the34

benefit increases with the cost invested. For the NSG, the benefit is fixed but35

the cost is shared among those that contribute. In Table 1 we summarize the36

payoffs of Cs and Ds in any case (as usual in N -person games, k = 0 means37

no cost is expended and no benefit is produced).38

We shall assume a population of size Z, from which groups of size N39

are randomly sampled. Let us first study the conventional limit in which40

Z → ∞, under deterministic replicator dynamics. Subsequently, we shall41

consider stochastic dynamics in finite populations. The fitness of individuals42

is determined by their payoff collected when engaging in N -person PGG, re-43

quiring at least 0 < M < N individuals to produce any public good at all.44

We shall find that requiring a minimum threshold of cooperators to produce45
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Game NPD NSG
Strategy C D C D

1 ≤ k < M −c 0 − c
M 0

M ≤ k Fkc
N − c Fkc

N b− c
k b

Table 1. Payoff values ΠC and ΠD for the NPD and NSG.

a benefit leads to the appearance of both coexistence and coordination fea-1

tures in an otherwise defector dominance game (NPD), and to coordination2

features in an otherwise coexistence game (NSG). Hence, we obtain a richer3

evolutionary dynamics scenario in infinite populations, which, at least quali-4

tatively, brings about a unified picture of N -person games with a threshold.5

We find that this scenario remains qualitatively valid whenever we remove6

the approximation of assuming infinite populations, although the stochastic7

dynamics only ends whenever a monomorphic composition of the population8

is reached. Nonetheless, for small populations and/or group sizes spanning9

nearly the entire population, we observe the “spite” effect first noted by10

Hamilton in 1970, and which works against cooperation [37] .11

2. Evolutionary Dynamics of PGGs in Infinite Populations12

Let us assume a very large population, a fraction x of which is composed of13

Cs, the remaining fraction (1− x) being Ds. Let groups of N individuals be14

sampled randomly from the population. Such a random sampling leads to15

groups whose composition follows a binomial distribution. The fitness of the16

Ds is given by17

fD =
N−1∑
k=0

(
N − 1
k

)
xk(1− x)N−1−kΠD(k), (2.1)

whereas the average fitness of Cs is given by18

fC =
N−1∑
k=0

(
N − 1
k

)
xk(1− x)N−1−kΠC(k + 1), (2.2)

ΠC and ΠD are defined in Table 1 for each of the games. The evolutionary19

dynamics is given by the replicator equation [4],20

ẋ = x(1− x)(fC − fD) (2.3)

following that there exists an interior fixed point, x∗, whenever Q(x∗) =21

fC(x∗)− fD(x∗) = 0.22

2.1. N -person PD with thresholds in infinite populations23

For the NPD, with a given threshold M , the payoff of Defectors and Coop-
erators can be explicitly written as (see Table 1) ΠD = (kFc/N)θ(k −M)
and ΠC = ΠD − c, respectively, where the Heaviside step function θ(x) is
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Figure 2.1. a) Interior fixed points of the replicator equa-
tion for N -person PD games with coordination threshold.
The curves provide the location of the critical values of the
fraction of cooperators (xL,xR) at which fC = fD . For each
value of F (defining a horizontal line), the critical values are
given by the intersection of this line with each curve (one
curve for given fixed M and N = 20). Scenarios with none,
one and two interior fixed points are possible as detailed
in the right panel. b) Dynamics of N -person PD in infinite
populations with coordination threshold. Empty circles rep-
resent unstable fixed points; full circles represent stable fixed
points and arrows indicate the direction of evolution by nat-
ural selection.

equal to 1 whenever x ≥ 0 and equal to 0 otherwise. The introduction of a
threshold (M > 1) leads to a symmetry breaking of the sampling, which does
not allow a closed form expression for the fitness. Thus, the determination of
the possible interior equilibrium points, i.e., the zeros of Q(x) has to be done
numerically. However, a great deal of information can be obtained without
solving explicitly for Q(x) = 0. Indeed, as shown in [38], introducing ΠC and
ΠD above in Eqs. (2.1) and (2.2) leads to

Q(x) = fC(x)− fD(x)

= c

(
F

N
− 1
)

− c F
N

(1− x)N−M
M−1∑
k=0

(
N − 1
k

)
(1−Mδk,M−1)xk(1− x)M−1−k.

In what follows, we shall strictly assume that N ≥ 2. For most of the time,1

we shall assume that 1 < M ≤ N ; the degenerate cases can be handled as2
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well, and the reader is referred to [38] for details. Let1

R(x) =
N−1∑
k=M

(
N − 1
k

)
xk(1− x)N−1−k +M

(
N − 1
M − 1

)
xM−1(1− x)N−M

= xM−1

(
N−1∑
k=M

(
N − 1
k

)
xk−M+1(1− x)N−1−k +M

(
N − 1
M − 1

)
(1− x)N−M

)
.

(2.4)

Since,2

1 = 1N−1 = (x+ 1− x)N−1 =
N−1∑
k=0

(
N − 1
k

)
xk(1− x)N−1−k,

we have that3

Q(x) = −c (1− λR(x)) , (2.5)
with λ = F/N .4

Lemma 2.1. The polynomial R defined above satisfies5

1. R(0) = 0;6

2. R(1) = 1;7

3. R(x) > 0, x ∈ (0, 1);8

4. Let x∗ = M/N . Then we have that R′(x) > 0 for 0 ≤ x < x∗, and9

R′(x) < 0 for x∗ < x < 1. In particular, R′(x∗) = 0, and x∗ is a point10

of maximum of R with R(x∗) > 1.11

Proof. First, notice that 1., 2. and 3. are straightforward from the form of12

the polynomial R(x); cf. (2.4).13

To prove 4., we let k = N − 1− k′, and on noting that14 (
N − 1

N − 1− k′

)
=
(
N − 1
k′

)
,

we may write

R(x) = xM−1

[
N−M−1∑
k′=0

(
N − 1
k′

)
xN−M−k

′
(1− x)k

′
+M

(
N − 1
M − 1

)
(1− x)N−M

]

= xN−1

[
N−M−1∑
k′=0

(
N − 1
k′

)(
1− x
x

)k′
+M

(
N − 1
M − 1

)(
1− x
x

)N−M]
.

Let15

z =
1− x
x

.

Then, we have that16

z′ = − 1
x2

= − 1
x

(z + 1)

Thus,17

R(x) = xN−1p(z), with p(z) =
N−M∑
i=0

aiz
i,
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where1

ai =
(
N − 1
i

)
, 0 ≤ i < N −M and aN−M = M

(
N − 1
M − 1

)
We now compute R′:

R′(x) = (N − 1)xN−2p(z)− xN−2p′(z)(z + 1)

= xN−2 [(N − 1)p(z)− (z + 1)p′(z)]

= xN−2

[
(N − 1)

N−M∑
i=0

aiz
i −

N−M∑
i=1

iaiz
i −

N−M∑
i=1

iaiz
i−1

]

= xN−2

[
(N − 1)a0 − a1 + (N − 1)

N−M∑
i=1

aiz
i −

N−M∑
i=1

iaiz
i −

N−M∑
i=2

iaiz
i−1

]
.

Since a0 = 1 and a1 = N − 1, and writing i = i+ 1 in the last sum, we find
that

R′(x) = xN−2

[
(N − 1)

N−M∑
i=1

aiz
i −

N−M∑
i=1

iaiz
i −

N−M−1∑
i=1

(i+ 1)ai+1z
i

]
= xN−2S(z),

where

S(z) =
N−M−2∑
i=1

[(N − 1− i)ai − (i+ 1)ai+1] zi

+ [MaN−M−1 − (N −M)aN−M ] zN−M−1 + (M − 1)aN−MzN−M .

On noting that2 (
L

j + 1

)
=
L− j
j + 1

(
L

j

)
, (2.6)

we obtain, for 1 ≤ i < N −M , that3

ai+1 =
N − 1− i
i+ 1

ai.

Hence,4

N−M−2∑
i=1

[(N − 1− i)ai − (i+ 1)ai+1] zi = 0.

Also, we have5

MaN−M−1 − (N −M)aN−M = M

(
N − 1
M

)
− (N −M)

(
N − 1
M − 1

)
,

which on calling upon (2.6) yields

M

(
N − 1
M

)
− (N −M)

(
N − 1
M − 1

)
= (N −M)

(
N − 1
M

)
− (N −M)

(
N − 1
M − 1

)
= −(N −M)(M − 1)

(
N − 1
M − 1

)
.
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Thus, we write1

S(z) = zN−M−1

(
N − 1
M − 1

)
[−(N −M)(M − 1) +M(M − 1)z]

which yields2

R′(x) = xM−1(1− x)N−M−1

(
N − 1
M − 1

)
[−(N −M)(M − 1) +M(M − 1)z]

(2.7)
For x ∈ (0, 1), (2.7) vanishes at3

z∗ =
N −M
M

=
1−M/N

M/N
.

Since4

z =
1− x
x

is one-to-one.5

x∗ =
M

N
.

Also, from (2.7), we see that6

1. for 0 < z < z∗, R′(x) < 0;7

2. for z > z∗, R′(x) > 08

Furthermore, z = (1 − x)/x is monotonically decreasing and maps (0, 1)9

in (0,∞) (thus reversing the orientation), which yields that 0 < z < z∗10

corresponds to x∗ < x < 1 and z > z∗ corresponds to 0 < x < x∗.11

This proves 4. �12

Using the information provided by Lemma 2.1, we have13

Theorem 2.2. Let λ∗ = 1/R(x∗). Then we have that 0 < λ∗ < 1. Moreover,14

we have that Q(x) satisfies:15

1. For λ < λ∗ there are no roots in (0, 1);16

2. For λ = λ∗ there exists one double root at x = x∗;17

3. For λ∗ < λ ≤ 1 there are two simple roots {xL, xR}, with xL ∈ (0, x∗)18

and xR ∈ (x∗, 1].19

4. For λ > 1 there is only one root in (0, x∗).20

From Theorem 2.2, we can infer the the complete evolutionary dynamics21

of the system. Thus, if F < λ∗N , no interior equilibrium is possible. For22

F = λ∗N , x = M/N is a unstable equilibrium. For23

λ∗ <
F

N
< 1,

we have the existence of two equilibria. The leftmost equilibrium is always less24

than M/N and it is unstable. On the other hand, the rightmost equilibrium25

is always greater than M/N , and it is stable. The reader is referred to [38]26

for the detailed proofs.27

Overall, the analysis above shows that the properties of Q(x) lead to28

a very interesting dynamics of the replicator equation, with possibly two29
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interior fixed points (xL and xR), as illustrated in Fig. 2.1, for N = 20,1

different values of 1 < M ≤ 20 and variable F . Note, in particular, that the2

fact that R′(xL) > 0 and R′(xR) < 0 [38] allows us to classify immediately3

xL as an unstable fixed point whereas xR, if it exists, corresponds to a stable4

fixed point, as illustrated also in Fig. 2.1. Moreover, when F/N = R(M/N)−1,5

M/N is the unique interior and unstable fixed point.6

Between these two limiting values of F , and given the nature of the7

interior fixed points xL and xR, one can easily conclude that below xL all8

individuals will ultimately forego the public good. Conversely, for all x >9

xL, the population will evolve towards a mixed equilibrium defined by xR,10

corresponding to a stable fixed point of the associated replicator equation11

(even if, initially, x > xR). Similar to the N -person PD, whenever F/N <12

R(M/N)−1, fC(x) < fD(x), for all x ∈ (0, 1), which means that all individuals13

will end up foregoing the public good.14

2.2. N -person SG with thresholds in infinite populations15

For the NSG, we may formally write the payoffs in Table 1 in the form16

ΠD(k) = bθ(k −M) (2.8)

for the payoff of a defector in the group and17

ΠC(k) = ΠD(k)− c

k
θ(k −M)− c

M
(1− θ(k −M)) (2.9)

for the payoff of a cooperator in the same group. Under these assumptions,
one can show that Q(x) now reads [39]

Q(x) =
c

xN

{
N
b

c

(
N − 1
M − 1

)
xM (1− x)N−M

−

[
1 +

M−1∑
k=0

(
N

k

)
xk(1− x)N−k

(
k

M
− 1
)]}

.

Although the polynomial Q in this case is quite distinct from the NPD
case, we can show similar results for the internal fixed points. More precisely,
let γ = c/b. We find that it will be more appropriate to study

p(x, γ) =N
(
N − 1
M − 1

)
xM (1− x)N−M

− γ

[
1 +

M−1∑
k=0

(
N

k

)
xk(1− x)N−k

(
k

M
− 1
)]

.

p(x, γ) has the same interior roots as Q(x), and we made the dependence on γ18

explicit. Notice also that p(x, γ) implies the same dynamics for the Replicator19

equation as that implied by Q(x) in (0, 1) up to a time rescaling. We then20

have the following result21

Theorem 2.3. There exists 0 < γ̄ and 0 < x̄ < 1 such that, if22

1. γ̄/γ < 1, then the evolutionary dynamics has no interior equilibria.23

2. γ̄/γ = 1, then x̄ is a unique interior equilibrium.24
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3. γ̄/γ > 1, then there are two interior equilibria xL < x̄ < xR. Moreover,1

xL is always an unstable equilibrium point, while xR is always a stable2

point.3

In order to prove Theorem 2.3, it turns out that is more convenient to4

determine what γ will render a given x ∈ (0, 1) an interior point, rather than5

determining what x are equilibria for a given γ. Let us define6

Γ(x) =

{
0, x = 0,
N
(
N−1
M−1

) xM (1−x)N−M

1+
PM−1

k=0 (N
k)xk(1−x)N−k( k

M−1) , 0 < x ≤ 1. (2.10)

Then Γ : [0, 1] → R is continuous in [0, 1] and differentiable in (0, 1). Also,7

by solving for γ the equation p(x, γ) = 0, it is straightforward to verify that8

we have the identity9

p(x,Γ(x)) = 0. (2.11)
Ultimately, Γ(x) is responsible for the existence of a cost-to-benefit ratio at10

which a given interior x can become an equilibrium of the replicator dynam-11

ics. The critical value x̄ corresponds to the first interior equilibrium which12

emerges when c/b = γ̄ and which divides the unit interval into two pieces, in13

which the stable and unstable equilibria remain confined whenever c/b < γ̄.14

The thrust of the argument is to study the number of solutions of Γ(x) = γ,15

for a given γ, which then can be used to prove Theorem 2.3. In order to16

achieve our goal, we establish a series of results about Γ. In what follows, we17

shall assume N > 2 and 1 < M < N .18

Proposition 2.4. There is a unique x̄ ∈ (0, 1) such that Γ′(x̄) = 0. Such x̄ will19

be the unique point of global maximum for Γ.20

Proposition 2.5. Let γ̄ = Γ(x̄), with x̄ given above. Then the equation Γ(x) =21

γ has22

1. two solutions, xL and xR, for γ < γ̄. Moreover xL ∈ [0, x̄) and xR ∈23

(x̄, 1].24

2. one solution for γ = γ̄;25

3. no solution for γ > γ̄.26

Finally, the following asymptotic result allows an approximate determi-27

nation of x̄.28

Proposition 2.6. Let x0 = M
N and assume that29

0 < ε =
N −M
N

� 1

Then, we have that30

x̄ = x0 −
xM0
M

(
N

M − 1

)
εN−M+1 +O(εN−M+2) .

Therefore, when the threshold is comparable in order to the size of the31

group, we have that while the critical equilibrium is not quite M/N , it is32

quite close to it. We refer the interested reader to [39] for detailed proofs.33
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Figure 2.2. Equilibria of the N -person Snowdrift Game
with threshold. We assume infinite, well-mixed populations,
fix the group size at N = 20 and vary the threshold M
above which cooperation leads to a common benefit b. The
total cost involved is c. In a) we show how the occurrence of a
threshold leads to the appearance of at most 2 interior fixed
points xL and xR, which can be found via the intersection of
a horizontal line with the appropriate curve (illustrated for
M = 10); in this case, the leftmost root is always an unstable
fixed point whereas the rightmost corresponds to stable fixed
point, as illustrated by the horizontal arrows (see main text
for details). For a given M/N , there is a critical value γ̄ for
the critical cost-to-benefit ratio c/b below which the 2 inte-
rior roots discussed above always exist. In panel b) we show
how these interior fixed points scale with variable group size
N for some values of the b/c ratio indicated. For γ̄b < c no
interior fixed points exist and defectors dominate uncondi-
tionally, whereas for γ̄b = c the only root corresponds to an
unstable fixed point.

As in the case of the NPD, the exact position of the roots of Q(x) in1

the NSG regime may be cumbersome to find analytically, but are easy to2

compute numerically. Fig. 2.2 pictures the position of the interior roots of3

Q(x) for a fixed group size of N = 20 and variable threshold values of M4

(right panel).5

For each value of M there is a critical benefit-to-cost value b/c above6

which two interior fixed points emerge. These can be found in Fig. 2.2 by7

drawing a horizontal line at a fixed b/c — its intersection with the appropriate8

curve for a given threshold M provides the location of the points.9

As shown above and illustrated in Fig. 2.2, one root corresponds to an10

unstable fixed point (xL) and the other to a stable fixed point (xR) inducing11

a coexistence between Cs and Ds. This means there is a range of values of x12
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(xL < x < xR), in which Cs are favored against Ds (fC(x) > fD(x)). When1

x > xL, the system will always evolve to the mixed configuration given by2

xR, and below xL all individuals will end up refusing to contribute to the3

public good.4

3. Evolutionary Dynamics of PGGs in Finite Populations5

Let us focus on a well-mixed population of size Z in the absence of mutations.6

Sampling of individuals is no longer binomial, following a hypergeometric7

distribution. Consequently, the average fitness of Cs and Ds can now be8

written as9

fC(k) =
(
Z − 1
N − 1

)−1 N−1∑
j=0

(
k − 1
j

)(
Z − k

N − j − 1

)
ΠC(j + 1) (3.1)

and10

fD(k) =
(
Z − 1
N − 1

)−1 N−1∑
j=0

(
k

j

)(
Z − k − 1
N − j − 1

)
ΠD(j) (3.2)

respectively.11

The fraction of cooperators is no longer a continuous variable, varying12

in steps of 1/Z. We adopt a stochastic birth-death process [40] combined with13

the pairwise comparison rule [41, 42, 43] in order to describe the evolutionary14

dynamics of Cs (and Ds) in a finite population. Under pairwise comparison,15

two individuals from the population, A and B are randomly selected for16

update (only the selection of mixed pairs can change the composition of the17

population). The strategy of A will replace that of B with a probability given18

by the Fermi function (from statistical physics)19

p =
1

1 + e−β(fA−fB)
. (3.3)

The reverse will happen with probability 1 − p. The quantity β, which in20

physics corresponds to an inverse temperature, controls the intensity of se-21

lection: For β � 1 selection is weak, and one recovers the replicator equation22

in the limit Z →∞ [41, 42, 43]. For arbitrary β, the quantity corresponding23

to the right hand side of the replicator equation, specifying the gradient of24

selection, is given in finite populations by [41, 42, 43]25

g(k) ≡ T+(k)− T−(k) =
k

Z

Z − k
Z

tanh
{
β

2
[fC(k)− fD(k)]

}
(3.4)

The right hand side of g(k) is similar to the replicator equation, only that26

the (non-linear) pairwise comparison [41, 42, 43] defined in Eq. 3.3 leads to27

the appearance of the hyperbolic tangent of the fitness difference, instead of28

the fitness difference. This has implications in the characteristic evolutionary29

times, which now depend on β [41, 42, 43], but not in what concerns the30

roots of g(k). Importantly, the evolutionary dynamics in finite populations31

will only stop whenever the population reaches a monomorphic state (k = 032



Evolutionary dynamics of collective action 13

0.0 0.2 0.4 0.6 0.8 1.0

-0.1

0.0

0.1

k/Z
0.0 0.2 0.4 0.6 0.8 1.0

!0.15

!0.10

!0.05

0.00

0.05

0.10

0.0 0.2 0.4 0.6 0.8 1.0

!0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0
k/Z

0.0

0.1

0.2

-0.1

g(
k)

a) F>N

Z=100
Z→∞

Z=40
Z=20
Z=10 b) F<N

Figure 3.1. Behaviour of g(k) for a N -person PD game
with coordination threshold M = 5 in a population of vari-
able size Z and fixed group size N = 10. a) Since F = 12 >
N , the game becomes a pure coordination game in infinite
populations. In finite populations, however, it strongly de-
pends on Z: For Z = N , Cs are always disadvantageous and
evolutionary dynamics leads mostly to 100% Ds. For Z = 20
(and using a terminology which is only correct for Z →∞),
we obtain a profile for g(k) evidencing the emergence of a
coordination point and a coexistence point. For increasingly
large Z (e. g., Z = 40), the coexistence point disappears
and we recover the behaviour of the replicator dynamics (see
Fig. 2.1: Selection favours Cs above a given fraction k/Z and
Ds below that fraction which, in turn, depends on the pop-
ulation size. b) Since F = 8 < N , the game exhibits now
2 interior fixed points in infinite populations (red curve).
Similar to a), for small Z Cs are disadvantageous for all k.
Unlike a), however, now two interior fixed points emerge to-
gether for a critical population size, and remain for larger
population sizes.

or k = Z). Hence, the sign of g(k), which indicates the direction of selection,1

is important in that it may strongly influence the evolutionary time required2

to reach any of the absorbing states.3

3.1. N -person PD with thresholds in finite populations4

Whenever M = 0 (NPD without the requirement to coordinate to obtain5

collective benefits) we may write6

fC(k)− fD(k) = c

[
F

N

(
1− N − 1

Z − 1

)
− 1
]

(3.5)

which is independent of k being, however, population and group size de-7

pendent. This means frequency independent selection. In particular, when-8

ever the size of the group equals the population size, N = Z, we have that9
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Figure 3.2. a) Equilibria of the N -person snowdrift game
with threshold in finite populations. Population size is Z =
50 and group size is N = 20. We vary the threshold M above
which cooperation leads to a common benefit b. For each
k/Z we show the corresponding b/c at which g(k) = 0 (cf.
Eq. (13)). Whenever the population size is large compared
to group size, selection in finite populations is qualitatively
similar to that in infinite populations. b) Effect of group size
in the evolution of cooperation.We plot g(k) as a function
of the fraction of cooperators k/Z, for b/c = 5. We fixed
the population size at Z = 50 and the threshold at M = 5,
while varying the group size N . As the group size approaches
the population size, the range of values of k/Z for which
cooperation is advantageous (g(k) > 0) is reduced.

fC(k)− fD(k) = −c and cooperators have no chance irrespective of the value1

of the enhancement factor. This contrasts with the result in infinite, well-2

mixed populations (Z → ∞), where to play C would be the best option3

whenever F > N . For finite populations, the possibility that group size equals4

population size leads to the demise of cooperation. Moreover, given the inde-5

pendence of fC(k)− fD(k) on k in finite populations, for a given population6

size, it is straightforward to obtain a critical value of F for which selection is7

neutral, and above which cooperators will win the evolutionary race. From8

the equations above this critical value reads F = N
(

1− N−1
Z−1

)−1

.9

Let us now discuss the NPD with 1 < M < N ≤ Z. Whenever N = Z,10

the result is easily inferred from the NPD above — all individuals in the11

population will ultimately forego the public good. This will happen, in finite12

populations, irrespective of the existence (or not) of a threshold M . However,13

whenever N < Z the threshold brings about a strong disruption of the finite14

population dynamics, which we illustrate numerically, given the unappealing15

look of the analytical equations.16
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Let us start with the case in which F > N , that is, the regime for which1

we obtain a pure coordination game with a single (unstable) fixed point in2

the replicator dynamics equation (cf. Fig. 2.1). In finite populations the pos-3

sible scenarios are depicted in the left panel of Fig. 3.1. Clearly, for small4

population sizes, cooperators are always disadvantageous. With increasing5

Z, however, one approaches the replicator dynamics scenario (see Fig. 2.1),6

despite the fact that, e.g., for Z = 20, convergence towards the absorbing7

state at 100% Cs is hindered because Cs become disadvantageous for large k.8

Indeed, for this population size, Cs are advantageous only in a small neigh-9

bourhood of k/Z = 0.5, being disadvantageous both for smaller and larger10

values of k/Z. In other words, and despite the fact that evolution will stop11

only at k = 0 or k = Z, the time it takes to reach an absorbing state will12

depend sensitively on the population size, given the occurrence (or not) of13

interior roots of g(k).14

Whenever F < N , yet above the critical limit below which Cs become15

disadvantageous for all x in Fig. 2.1, we observe that for small population16

sizes Cs are always disadvantageous, and the two interior fixed points of17

the replicator dynamics equation only manifest themselves above a critical18

population size, as illustrated in the right panel of Fig. 3.1.19

3.2. N -person SG with thresholds in finite populations20

In Fig. 3.2a, we show how the qualitative behavior of selection under stochas-21

tic dynamics in finite populations mimics closely that already encountered22

in the previous section (c.f. Fig. 2.2), associated with deterministic dynamics23

in infinite populations. Although the population will always fixate in one of24

the two absorbing states (k = 0 and k = Z in the absence of mutations),25

selection will act to drive the population toward a composition reflecting the26

rightmost root of g(k), which constitutes the deepest point of the basin of27

attraction of the evolutionary dynamics.28

On the other hand, as the group size approaches the population size29

the previous basin of attraction is reduced. In Fig. 3.2b we show a typical30

behavior of g(k) as a function of the fraction of cooperators k/Z for fixed31

population size Z = 50, threshold M = 5 and different group sizes N . As N32

increases, cooperation becomes increasingly unfeasible — in the limit when33

N → Z, cooperators have no chance and defectors dominate unconditionally.34

Moreover, for a given b/c ratio, the existence of a finite population analogue of35

a stable root of g(k) (in infinite populations) occurs for values of the frequency36

k/Z of cooperators which decrease as N increases. This has been first noted37

by Hamilton [37] and reflects the occurrence of “spite” which works against38

cooperation, as illustrated in Fig. 3.2.39
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4. Discussion1

We showed how generalizing the conventional versions of the NPD and NSG2

dilemmas by introducing thresholds below which collective action is unfeasi-3

ble leads to the emergence of an entirely new evolutionary scenario. Irrespec-4

tively of the game played, in infinite, well-mixed populations, the existence5

of a threshold opens the possibility for the appearance of two interior fixed6

points in the replicator equation (xL and xR). The one at lower frequency7

of cooperators is always an unstable fixed point (coordination), which de-8

termines a threshold for cooperative collective action. The other, at higher9

frequency of cooperators, is a stable fixed point (coexistence), and hence de-10

termines the final frequency of cooperators in the population, assuming the11

coordination threshold is overcome. Moreover, both dilemmas converge to a12

pure coordination game whenever the coordination threshold approaches the13

group size.14

In the particular case of the NSG with a given threshold M and group15

size N , there is always a critical cost-to-benefit ratio c/b above which the two16

interior roots discussed above emerge. The same qualitative behavior can be17

observed in finite populations. However, as soon as the group size approaches18

the population size, cooperation becomes increasingly unfeasible.19

In the NPD, besides the above mentioned regime with two interior20

roots, there are also the possible outcomes of no cooperation or of a pure21

coordination game, which depends sensitively on the minimum number of22

cooperators M in a group of N individuals required to produce any public23

good. In finite populations, the evolutionary dynamics of the NPD game may24

be profoundly affected, mostly when the population size (Z) is comparable25

to the group size (N). In this regime, one observes an overlap of the different26

scenarios observed in infinite populations. Hence, for Z = N , cooperators are27

always disadvantageous, irrespective of the existence or not of a threshold.28

For Z > N , the direction of selection in a finite population is strongly size29

dependent. For fixed F > N , there is a critical value, Z1, above which the30

interior roots of g(k) emerge, which constitute the finite-population analogs31

of xL and xR in infinite populations (cf. Fig. 2.1). Above a second critical32

value, Z2, xR disappears, and one ends up with a coordination game. For33

M < F < N and a small population size, that is, F < N but yet above34

the critical value λ∗ = R(M/N)−1 defined in section 2.1, cooperators are35

always disadvantageous; however, above a critical population size (ZC) the36

interior roots of g(k) emerge simultaneously and the evolutionary dynamics37

approaches that observed in infinite populations.38

5. Conclusions39

Unlike two-person games, current models of collective action have typically40

overlooked the necessity of some form of coordination among individuals, per-41

vasive in biological and social collective dilemmas. From social organization42

[17] to the salvation of the planet against environmental hazards [44, 45],43
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examples abound where a minimum number of individuals, which does not1

necessarily equal the entire group, must simultaneously cooperate before any2

outcome (or public good) is produced.3

In this chapter we investigate the predictions of evolutionary game the-4

ory in both finite and infinite populations, whenever a minimum threshold5

of individuals must cooperate simultaneously in a group before any viable6

public good is achieved. We have concentrated on two of the most important7

collective dilemmas: the N -person snowdrift game (NSG) [39] and N -person8

prisoner’s dilemma (NPD) [38]. In doing so, we uncover a new framework in9

which the advantage or not of cooperators depends sensitively on group and10

population size, as well as on the threshold for collective action. Such inter-11

play leads to rich evolutionary scenarios, impossible to anticipate based on12

the traditional assumption of infinite populations, providing valuable insights13

into the variety and complexity of many person social dilemmas, inescapable14

especially among humans.15

In addition, it is noteworthy that irrespectively of the distinctive fea-16

tures of the N -person Prisoner’s dilemma (a defector’s dominance dilemma)17

and the N -person Snowdrift game (a coexistence game), the existence of a18

coordination threshold is able to produce an unifying framework associated19

with a generalized stag-hunt game [38]. Moreover, the necessity of coordina-20

tion is shown to increase the equilibrium fraction of cooperators, even if this21

enhancement comes together with a strong dependence on the initial level of22

cooperation, since coexistence between cooperators only emerges when a min-23

imum number of cooperators is already present in the population. This result24

is of particular relevance given that the existence of coordination thresholds25

constitutes a rule, rather than the exception. Finally, our results reinforce the26

idea that even minor differences in the nature of collective rewards and/or27

costs can have a profound effect in the final outcome of evolution.28
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