
Pathological Altruism – Oakley, Knafo, Madhavan, Wilson                                                                            1 

 

Chapter 24: The Messianic Effect of Pathological Altruism 
Jorge M. Pacheco

1,3,4
 and Francisco C. Santos

2,3,4
 

 

 
1 

Departamento de Matemática e Aplicações, Universidade do Minho, 4710 - 057 Braga, Portugal  
2 CENTRIA, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 

Caparica, Portugal.  
3 

ATP-group, CMAF, Complexo Interdisciplinar, P-1649-003 Lisboa Codex, Portugal, 
4 

GADGET, Apartado 1329, 1009-001, Lisboa, Portugal.  

 

Key Concepts 

 
Introduction  

Humans live in large societies characterized by exchange and cooperation between individuals 

who, in the majority of cases, are not kin-related. Close examination reveals that humans actually 

cooperate more often than would be expected from evolutionary game theory as modeled in terms of the 

classic Prisoner’s Dilemma (Axelrod & Hamilton, 1981; Hofbauer & Sigmund, 1998; Maynard-Smith, 

1982). Prisoner’s Dilemma is rooted on the assumption that the act of cooperation entails a certain cost 

c, which need not be a monetary cost. The recipient of a cooperative act receives a benefit b. 

Quantitatively, the magic of cooperation relies on the fact that b > c.  

In a black and white world in which people can only behave as cooperators or defectors, one of 

only four possible outcomes takes place when two individuals interact. When both cooperate (C), each 

receives a benefit b but also experiences a cost c; hence each receives a net profit of b-c. When both 

defect (D), neither player receives cost nor benefit. Lastly, if one player cooperates while the other 

defects, then D receives a benefit without a cost, whereas C experiences a cost with no benefit. These 

four entries fill in what is known in game theory as the payoff matrix:  










PT

SR

D

C

DC

 



Pathological Altruism – Oakley, Knafo, Madhavan, Wilson                                                                            2 

 

with R=(b-c), T=b, S=-c and P=0. These four entries satisfy the ranking order T>R>P>S, which is the 

hallmark of a Prisoner’s Dilemma game. The fact that mutual cooperation is always better than mutual 

defection implies that R>P. When T>R, one may think of greed, as an individual is tempted to play D 

towards a C (Macy & Flache, 2002). Indeed, in the absence of greed (T<R), the dilemma is relaxed 

from a pure defector dominance game into a coordination game, termed the Stag-Hunt Dilemma 

(Skyrms, 2004). In this case, only the fear of being cheated on by a defector (P>S) provides a reason for 

defecting instead of cooperating (Macy & Flache, 2002). But there is yet another scenario—that in 

which fear is removed from the Prisoner’s Dilemma so that greed becomes the only reason to defect.  

This dilemma then becomes a coexistence game, known as the Chicken, Hawk-Dove or Snowdrift 

Dilemma (Maynard-Smith, 1982).  

In sum, then, Prisoner’s Dilemma emerges as the most stringent of the social dilemmas captured in 

terms of symmetric, one-shot, two-player games. It is the stringent Prisoner’s Dilemma, in its cost-

benefit version (the parameterization above), that constitutes the hallmark of most studies carried out to 

date addressing the evolution of cooperation (Nowak, 2006a, 2006b; Taylor, Day, & Wild, 2007).  

A mathematical model of pathological altruism 

In keeping with such studies, we shall also adopt the Prisoner’s Dilemma, and consider a finite 

population, small enough to make it equally likely that anyone in the population could interact with 

anyone else (Dunbar, 2003). This is the commonly encountered well-mixed assumption (known as the 

mean field approximation in physics) (Hofbauer & Sigmund, 1998). Under such circumstances, 

cooperators are always at a disadvantage when compared with defectors, and natural selection favors the 

increase of Ds at the expense of Cs. This is related to the fact that the payoff for Cs (interpreted as 

fitness or social success in evolutionary game theory) is lower than that of Ds. For a population of size N 

with k Cs, the average payoff of Cs and Ds is  

ΠC (k) =
k

N
R +

N − k

N
S =

k

N
b − c   (1) 

ΠD (k) =
k

N
T +

N − k

N
P =

k

N
b   (2) 

(for R=(b-c), T=b, S=-c and P=0, ignoring residual self-interaction corrections), and, since T>R>P>S 

we immediately see that Cs do worse than Ds independently of k, which means Ds ultimately dominate 

unconditionally the evolutionary dynamics in Prisoner’s Dilemma (see Figure 1d).  

Besides individual fitness, evolutionary dynamics relies on a process by which individuals revise their 

strategic behavior. Here we adopt a popular stochastic update known as the pairwise comparison rule 

(Szabó & Tőke, 1998; Traulsen, Nowak, & Pacheco, 2006): At each time step an individual i will adopt 

the strategy of a randomly chosen individual in the population j with a probability that increases with the 

increase in payoff difference between j and i. Hence, successful behaviors will be imitated and spread in 

the population. 

This probability is conveniently written in terms of the so-called Fermi distribution (from statistical 

physics) F Π j (k) − Π i(k)[ ]= 1+ e
−β Π j (k )−Π i (k )[ ][ ]

−1

, in which Π i(k)  and Π j (k)  are the payoffs of 

individuals i and j, respectively defined in equations (1) and (2), and β (an inverse temperature in 

physics) translates here into noise associated with errors in decision making. 
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Figure 1. The behavioral dynamics of a population can be studied by analyzing the sign of the gradient of selection G(k), 

defined as the difference between the probability of increasing in the number of cooperators, T
+
(k) versus that of decreasing, 

T
-(k) for each value k of cooperators in a population of size N. Whenever G(k)>0, cooperators will have an advantage over 

defectors, increasing their fraction in the population. On the contrary, if G(k)<0, evolution will promote the increase of 

defectors. Here we depict the dynamics of symmetric two-person one-shot dilemmas using gradients of selection. When 

cooperators have an advantage irrespectively of k, a Harmony Game is obtained (panel a). In this situation, individual and 

collective interests always coincide, and hence there is no dilemma. In the remaining three cases, individual and collective 

interests no longer coincide: Co-existence can be promoted (panel b) in situations in which a minority of individuals 

adopting a given behavior gain an advantage, losing this advantage when they become abundant. Hence, there is an internal 

equilibrium which is stable, represented in panel b by a solid circle. A coordination dilemma emerges whenever the opposite 

occurs (panel c) — the internal equilibrium becomes unstable (represented by an open circle in panel c). Finally, whenever 

cooperation is always a disadvantage we obtain a Prisoner’s Dilemma situation in which cooperators have no chance  to 

survive (panel d). The figure also illustrates how greed and fear operate in the various dilemmas. Greed alone (temptation to 

defect, T>R) results in a stable equilibrium (panel b).  Fear alone (fear of being cheated upon, P>S) results in an unstable 

equilibrium (panel c).  Greed and fear are both present as we move to panel d, with its combination of stable and unstable 

equilibrium points. 

For high values of β we obtain pure imitation dynamics commonly used in cultural evolution studies, 

whereas for β →0, selection becomes so weak that evolution proceeds by random drift.
1
 Under such a 

stochastic dynamics, one can compute the probabilities )(kT
+  and )(kT

−  for the number of Cs in the 

population to grow or diminish by a single cooperator in a given time step. Assuming there are k Cs in a 

population of size N, we may write  

                                                
1 Decreasing values of β may be thought of as increasing the likelihood that someone who actually wants to help fails to do 

so. For instance, someone comes across a beggar and wants to give him some money but realizes that has forgotten the purse. 

In other words, an example of a cooperator who fails to act accordingly. β  is also related, indirectly, to the issue of bounded 

rationality — sometimes, just by chance, one does not do what one is supposed to do rationally. Moreover, β measures errors 

in the imitation process related with the fact that often individuals face difficulties in assessing the success (or not) of others. 

This may lead individuals to change their behavior to something which is, in fact, worse than their previous choice. 
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such that the sign of the gradient of selection )()()( kTkTkG
−+ −=  indicates whether evolution favors 

the increase ( 0)( >kG ) or decrease ( 0)( <kG ) of Cs in the population. In Figure 1 we show the typical 

profile of )(kG  for the Prisoner’s Dilemma and other social dilemmas. Given the stochastic nature of 

the dynamics introduced, combined with the finite size of the population, the end states of evolution are 

inevitably monomorphic, that is, populations will be entirely comprised of Cooperators only or 

Defectors only, which become absorbing states of the evolutionary dynamics. Only in infinite 

populations can polymorphic states become stable. Yet, as shown in Figure 1, even in finite populations 

natural selection may lead populations to spend most of their time in polymorphic states, associated with 

the internal roots of G(k). Hence we employ, for finite populations, the same nomenclature which is 

strictly correct only in infinite deterministic dynamics, using an italic font to emphasize this association. 

With this proviso in mind, our discussion should cause no confusion.  

What happens if we now introduce a small number of pathological altruists (PA) in this 

population? Unlike conventional Cs, PAs do not imitate or let themselves be influenced by anyone – 

they are obstinate Cs. Hence, and similar to Cs, they suffer the exploitation of Ds while benefiting from 

the cooperation of Cs (and other PAs, if present). Although they do not imitate anyone, their altruistic 

behavior can be imitated by others – those who do so will be Ds who become Cs, given that, from the 

outset, PAs and Cs are indistinguishable. Let p≤N be the (fixed) number of PAs in the population. If 

k=k´+p, where k´ is the number of “conventional” Cs in the population, then the payoff of Cs and Ds is 

still given by equations (1) and (2), whereas the transition probabilities now read  

[ ])()()( kkF
N

k

N

kN
kT DCPA Π−Π

−
=+  (5) 

[ ])()()( kkF
N

kN

N

pk
kT CDPA Π−Π

−−
=−  (6) 

where Nkp ≤≤≤0 .  

Evolutionary dynamics of pathological altruists 

Comparison of equations (3) and (4) with equations (5) and (6) shows a subtle difference rooted 

in the profound changes introduced by the existence of PAs in the population—no matter how few PAs 

are introduced. The pre-factors of the Fermi function no longer coincide in equations (5) and (6). 

Instead, the symmetry is broken by the appearance of an additional term in p due to the presence of PAs. 

As we show below, this term is capable of disrupting the unconditional dominance of Ds portrayed in 

Figure 1d for the Prisoner’s Dilemma. Indeed, this additional factor provides an overall net positive 

contribution to G(k), with important consequences in the overall evolutionary dynamics of the 

population. Figure 2 provides a concrete example of the impact of PAs in a population of N=200 

individuals. In particular, the fact that 0
1

11
)( >

+

−
=

− c
eN

p

N

p
pG

β
 (for all p>0) means that a single PA is 
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sufficient to reverse the direction of natural selection, compared to the conventional Prisoner’s 

Dilemma, to instead favor an increase in the number of cooperators when these are rare. 

In essence, then, the presence of pathological altruists means that Cs no longer tend to go extinct, 

as in the standard Prisoner’s Dilemma (p=0 in Figure 2a). Instead, natural selection now drives the 

population into an internal polymorphic equilibrium characterized by the coexistence of Cs and Ds in the 

population. As Figure 1 revealed, such a coexistence equilibrium was possible due to greed alone, but 

the presence of PAs now renders fear and greed no longer sufficient to stop cooperators from surviving 

in a population in which at least one PA appears. In fact, for given values of c, β and p, equilibrium is 

attained at  

k
∗ =

p

1− e
−βc

.   (7) 

This is a remarkable result. The presence of p PAs induces an internal stable equilibrium in the 

evolutionary dynamics. More importantly, this equilibrium occurs for a value k*>p, as shown in Figure 

2b, a result which does not depend sensitively on the specific value of the cost-to-benefit ratio of 

cooperation. In other words, the presence of PAs catalyzes the appearance of standard cooperators in the 

population. It is also noteworthy that all this happens despite the fact that Cs and PAs have a lower 

fitness than Ds.  

 

Figure 2. Left panel. Dynamics of cooperation under a Prisoner’s Dilemma (c/b=0.5) for different numbers of PAs in a 

population of N=200 individuals. A single PA (p=1) is able to transform the original Prisoner’s Dilemma into a co-existence 

game with a stable equilibrium in the interval p < k ≤ N . In this particular case, for p=1 we obtain (β=0.1) k*=14 (see 

equation 7 and right panel), whereas for p=3 we obtain k*=61. These results should be compared with the conventional 

dynamics corresponding to p=0, in which case Cs are not evolutionary viable. The vertical dashed lines indicate the 

minimum value k=p. Right panel. Stable equilibria k* for the same conditions as in the left panel and different values of c/b 

and p. A small number of PAs is able to create a spectacular boost of cooperators in the population, providing evidence of the 

messianic effect of PAs, a process that occurs independently of the specific value of the cost-to-benefit ratio associated with 

the act of cooperation.  

From a mathematical perspective, and to the best of our knowledge, this is the first time one 

obtains an evolutionary dynamics in a well-mixed population in which the internal equilibria do not 

coincide with the zeroes of )()( kk CD Π−Π . For general symmetric two-person games, this difference 

depends on the number of k cooperators (pathological or not) and it is the possibility that this difference 

becomes zero that leads to the appearance of internal equilibria, stable or not. However, in the present 



Pathological Altruism – Oakley, Knafo, Madhavan, Wilson                                                                            6 

 

case, and for the particular (so-called “benefit-cost”) parameterization of the Prisoner’s Dilemma 

adopted, ckk CD =Π−Π )()(  for all k, and hence the evolutionary viability of Cs in the presence of PAs 

is due to the modified nature of the evolutionary dynamics, which no longer follows a standard 

replicator-like equation. This is easily understood when we take the (unrealistic) limit of infinite, well-

mixed populations. To this end, we define, in the usual sense, Nkx /= as the fraction of Cs (and PAs), 

and xNp ≤= /φ  as the fraction of PAs in the population, such that the corresponding fraction of Ds 

becomes x−1 . Taking the limit ∞→N  and maintaining both x and φ  constant leads to the following 

differential equation (Traulsen, et al., 2006)  

( ) [ ])()()1()()(
2

tanh)1( xxFxxxxxx CDDC Π−Π−+




 Π−Π−= φβ

& . 

The first term on the right-hand side is nothing but the standard modified replicator dynamics 

equation resulting from the pairwise comparison rule (Traulsen, et al., 2006), adopted for strategy 

update, and governed by the fitness difference between Cs (and PAs), and Ds. The second term results 

from the presence of PAs in the population, and is due to the inability of the evolutionary dynamics to 

reach values of x satisfying φ≤x . More important, however, is the fact that 0)( >φx& , transforming 

x = φ  into an unstable fixed point, promoting the appearance of Cs in the population.
2
  

Discussion  

The present model studies the impact of a fixed amount of PAs on the evolutionary dynamics of 

a finite, well-mixed population. PAs are obstinate cooperators who maintain their strategies irrespective 

of any stimuli to change that may surround them. We find that the presence of PAs in a population of 

size N leads the population to spend most of the time in a polymorphic composition in which the 

equilibrium number of Cs is given by  

1−
=−= ∗∗

cC
e

p
pkk

β
. 

Hence,  

i) the more PAs in the population,   

ii) the weaker the force of natural selection or   

iii) the smaller the cost of cooperation,   

 

the larger the incidence of cooperators in the population. In fact, whenever the product cβ  satisfies 

)/1ln( Npc −−<β , natural selection will favor the extinction of defectors. This is a remarkable effect 

in what concerns the impact of PAs in the evolutionary dynamics of the population. What is the intuition 

behind this result?  

As becomes clear from the discussion above, the fitness of an individual results from her 

interaction with her peers. These interactions clearly favor Ds, as individuals engage here in a Prisoner’s 

Dilemma. However, the evolutionary dynamics of the strategies within the population depend only 

partially on individual fitness. Indeed, for obstinate PAs what difference does the fitness of others make 

                                                
2
 Metaphorically, this might explain why dictators go to any lengths to purge and eliminate those who speak out against 

them.  But in those cases, so many factors contribute to such perversion that it is difficult to disentangle the effects of 

pathological altruists.  In modern times, attempts to control the media by governments and the existence of those who resist 

such attempts parallels, to some extent, the classic dictator example.  
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if the PAs themselves will never deviate from their altruistic behavior? An easy means to disentangle the 

roles played by fitness and strategy update is to view the fate of individuals as proceeding along the 

links of one or more complex networks.  

 
 

Figure 3. The figure illustrates a well-mixed population of seven individuals, in this case four Cs (black) two Ds (grey) and 

one PA (dark grey). The evolutionary dynamics is the result of i) interactions between individuals which proceed along the 

links of the interaction network (bottom, a complete graph of bi-directional links) and ii) behavior update which proceeds 

along the links of the imitation network (top, a complete graph of bi-directional links except those that emerge from the 

single PA. Here we adopt the notation that bidirectional links have no arrows, in contrast with directional links. Because links 

to PAs in the imitation network are not bi-directional, reflecting the obstinacy of PAs who never change behavior, the 

evolutionary dynamics of a population in the presence of PAs is profoundly affected by them: Their influence induces the 

emergence of Cs. As a visualization aid, nodes of the networks depicted have different sizes (bigger are meant to be closer) 

merely to induce a rudimentary sense of perspective to the picture.  

Under the well-mixed assumption, everyone is connected to everybody else and will freely 

interact with everybody. Hence, we can define an interaction network, illustrated at the bottom of Figure 

3, associated with a bi-directional complete graph, where individuals occupy the nodes of the graph, and 

the links between nodes define who interacts with whom. On the other hand, and inspired by the work 

described in  (Ohtsuki, Pacheco, & Nowak, 2007) and (Ohtsuki, Nowak, & Pacheco, 2007), we can also 

define a second graph, the so-called reproduction, update or imitation graph, represented on the top of 

Figure 3. Similar to the interaction network, individuals occupy nodes (the same nodes, as the 

individuals are the same in both graphs) but now the links are no longer bidirectional, as in this case 

some individual may use another as a role model without the reverse being true. This is precisely the 

case of PAs, who may be role models of all non-PAs in the population, but accept no role models 

themselves. That is, PAs are effectively disconnected in the imitation network, although they remain 

fully connected with everybody else through the interaction graph.  

Because of this peculiar topology of the imitation graph, the presence of PAs induces a 

symmetry breaking which is ultimately responsible for their messianic effect in the population as a 

whole, paving the way for cooperators to thrive. Depending on the value of the cost implicit in each act 

of cooperation, as well as on how strong natural selection leads individuals to change their strategy, the 

presence of rare (e.g., a single individual, see Figure 2) PAs may be enough to change the evolutionary 

dynamics from one in which Cs become extinct into another in which Cs dominate. This is a remarkable 
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effect of PAs that can be rationalized in terms of their strong role in the imitation sector of the 

evolutionary dynamics. This is more so whenever selection is weak.  

As argued elsewhere (Nowak, 2006a) the Prisoner’s Dilemma game considered here is but one 

of the many evolutionary game theory games that “individuals” engage in.  That is to say, in both game 

theory and real life, individuals have many interaction networks. And in these different networks, and 

even in the same network at different times, individuals play different games, some of which involve 

cooperation, some not. All of these interactions ultimately contribute to the fitness value of each 

individual. As such, when one concentrates on a single game, as we did here, it is natural to assume that 

fitness changes resulting solely from this game will be small or, equivalently, selection pressure due to 

this game alone will be weak. But this means, then, that random drift will dominate (or other games will 

be perhaps more important, which is not of interest here), and the weaker the effect of the game on 

fitness, the stronger the role of obstinate PAs. Hence, one expects PAs to introduce profound changes in 

the evolutionary dynamics of well-mixed communities.  

In view of the discussion so far, the question remains regarding the origin of PAs and how they 

may actually emerge in a population. As we (Santos, Santos, & Pacheco, 2008; Van Segbroeck, Santos, 

Lenaerts, & Pacheco, 2009) and others (McNamara, Barta, Fromhage, & Houston, 2008; McNamara, 

Barta, & Houston, 2004) have argued at length, humans are prone to explore new forms of behavior, and 

behavior diversity is an attribute of most free human societies. Within the time scale of cultural 

evolution studied here, it is likely that some individuals may become “attached” to their behavior, 

perhaps as a result of genetic predisposition, or as a result of their beliefs, perhaps simply because they 

respond too slowly to external stimuli to change. In any of these cases, we may be confronted with the 

obstinacy that characterizes PAs. Interestingly, whenever social diversity is modeled by means of 

heterogeneous networks of interactions, it can be shown that the most influential individuals are the 

most connected and the first to adopt cooperative behaviors (Santos & Pacheco, 2006; Santos, et al., 

2008), and remain resilient to changes from then on by comparison with the rest of the population. 

Moreover, the role of the influential person in the overall outcome of evolution is enhanced by their 

central position, as they efficiently influence a high number of individuals. Hence, the obstinacy of PAs 

may be further amplified as a result of differences in social positions, whenever their location is central 

in the social network.  

In the context of indirect reciprocity and moral systems (Nowak & Sigmund, 1998; Ohtsuki & 

Iwasa, 2004; Pacheco, Santos, & Chalub, 2006), a behavior somewhat paralleling pathological altruism 

has been called a phenotypic handicap (Lotem, Fishman, & Stone, 1999), in the sense that it also 

induces a (more modest) emergence of cooperators. In that case the handicap was associated with 

defection — defectors would help to stimulate discrimination in the community — whereas in the 

present model the immutable phenotype is associated with altruism. In both cases, however, one can 

view this immutability of behavior as maladaptative, which by no means implies that this type of 

individuals is rare. The result for PAs, as shown here, is that the appearance of a single such individual 

may have a spawning effect in the emergence of cooperation, a feature that would be unavailable until 

its appearance. The consequences can be devastating for defectors, as we have shown.  

A related issue that remains to be investigated is what happens if such an obstinant 

maladaptation would occur with a defector, instead of a cooperator. The upshot is that the model could 

then be extended to incorporate pathological defectors (“cheaters,” or “psychopaths”), in the population. 

In a nutshell, pathological cheaters would act to increase the strength of natural selection towards 

defection. In the simultaneous presence of both pathological altruists and pathological cheaters, the 

latter would, at most, reduce the fraction of cooperators who optimally coexist with defectors in the 

population.  But these pathological defectors would not be able to counteract the fundamental rift in 
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symmetry introduced by pathological altruists, who would always open a window of viability for 

cooperation to be maintained in populations.   

To summarize, pathological altruists — obstinate cooperators who never change their behavior 

towards others — introduce profound changes in the evolutionary dynamics of tight communities. In 

their presence, cheaters no longer push cooperators to extinction. Instead, the population evolves 

towards a coexistence of altruists and cheaters which characterizes its composition most of the time. 

Ironically, in the currency of cooperation, pathological altruists are very effective in allowing the 

population to avoid falling into the “tragedy of the commons” doomsday scenario referred to in the 

beginning.  This is done by securing the maintenance of cooperators in the population. In doing so, 

opportunity is also provided for cheaters to have cooperators to exploit.  
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