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Abstract. We have studied the evolution of cooperation in structured
populations whose topology coevolves with the game strategies of the
individuals. Strategy evolution proceeds according to an update rule with
a free parameter, which measures the selection pressure. We explore how
this parameter affects the interplay between network dynamics and strategy
dynamics. A dynamical network topology can influence the strategy dynamics in
two ways: (1) by modifying the expected payoff associated with each strategy and
(i1) by reshaping the imitation network that underlies the evolutionary process.
We show here that the selection pressure tunes the relative contribution of each of
these two forces to the final outcome of strategy evolution. The dynamics of the
imitation network plays only a minor role under strong selection, but becomes
the dominant force under weak selection. We demonstrate how these findings
constitute a mechanism supporting cooperative behavior.
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1. Introduction

Many biological systems, and especially human societies, show persistent cooperative patterns.
The evolution of such patterns is often studied using evolutionary game theory (EGT) [1]-[4].
This framework models interactions between the individuals of a population in terms of
simple games. Successful behavior—success being measured in terms of game payoff—will
be imitated and spreads in the population. The prototypical game to represent dilemmas of
cooperation is the conventional prisoner’s dilemma [5]. In this game, a cooperative act goes at
a cost ¢ to the cooperator while conferring a benefit b to another individual (assuming b > c).
Defectors receive the benefits without spending any costs and are therefore expected to have an
evolutionary advantage over cooperators.

However, given the omnipresence of prosocial behavior, certain conditions exist under
which cooperation becomes viable [4], [6]-[12]. It has, for instance, been recognized that
the topology of the network along which individuals interact and reproduce/imitate affects
drastically the evolutionary chances of cooperators [13]-[42] (see Szab6é and Fath for a
review [43]). The individuals also shape and reshape their social environment themselves
and are, at least partially, responsible for the specific features that characterize their
social network [44]-[47]. The process of network reshaping is often coupled with the
strategy dynamics: the behavior of an individual influences his social position and vice
versa [48]. Networks exhibiting such feedback loops provide sophisticated examples of adaptive
networks [49]. Several authors have studied the functioning of such networks in the context of
cooperation [50]-[65] (see [66] for a recent review). In general, cooperation has been shown
to emerge more easily when interactions that benefit both partners last longer than interactions
where one partner is exploited by the other [55, 56, 60].

In structured populations, the outcome of the evolutionary process depends also on the
update rule, which dictates how strategies evolve from one generation to the next [67]. The
selection pressure enters this update rule, and in EGT this is no exception, also being called
intensity of selection [68]. A maximal selection strength implies that individuals only imitate
those with a higher game payoff. Reducing the selection strength increases the amount of noise
in the imitation process, until, ultimately, evolution becomes a purely random process (neutral
selection or random drift). The impact of the selection pressure on the evolutionary dynamics
of a finite, well-mixed population is well understood by now [68]-[71]. Additional effects may,
however, arise in adaptive networks, where the social environment of an individual changes
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according to his behavior. Such a coevolutionary interplay between strategy evolution and graph
evolution may give rise to correlations between the strategies of connected individuals. The
strategy of an individual will therefore influence not only the payoff he acquires, but also the
probability that he will be considered as a potential role model by someone else. When some
strategies are more popular than others, the rate of strategy update may effectively change,
depending on the intensity of selection.

We study this issue in the framework of active linking (AL) dynamics [55, 56, 62, 65, 72],
a model that allows us to study cooperation in adaptive networks analytically in certain limits.
Section 2 introduces both our model and the framework in which we will make our analysis.
In section 3, we analyze the gradient of selection as a function of the intensity of selection,
assuming that the network topology evolves much faster than the individual behavior. Section 4
presents the conclusions.

2. A minimal model

Consider a finite population of N individuals interacting in symmetric, one-shot, two-player
games of cooperation defined by the payoff matrix

C D

C (R S
M=D(T P). (1)

We distinguish two possible game strategies: cooperate unconditionally (C) and defect
unconditionally (D). Payoff matrix 1 shows that individuals receive a reward R upon mutual
cooperation and a punishment P upon mutual defection. When a C meets a D, the C receives
the sucker’s payoff S, whereas the D acquires the temptation to defect 7T'.

Individuals do not interact with everyone in the population. Instead, a network indicates
who meets whom. The structure of this network is dynamic, in the sense that edges appear and
disappear over time. Simultaneously, individuals may reconsider their game play. The network
dynamics proceed on a characteristic time scale 7,, the strategy dynamics on another time
scale t,. Below, we define each of these two dynamical processes separately.

We use the AL model, developed earlier by Pacheco et al [55, 56], to define the network’s
evolution. Each individual has a propensity « to engage in new interactions, such that new
edges are formed at a rate ®. The lifetime of existing edges depends on the behavior of
the individuals connected by this link. Specifically, the rate at which CC-links, CD-links and
DD-links disappear is given by ycc, Ycp and ypp, respectively.

Consider a network with k Cs and N —k Ds. The number of CC-links, CD-links and
DD-links in such a network can never exceed Ncc = %k(k — 1), Nep=k(N —k) and Npp =
%(N —k)(N —k — 1), respectively. Under the assumption that the individuals stick to their game
behavior, for a large number of links, we can describe the time evolution of the number of links
of each type using the following ordinary differential equations,

Lec(t) =a® [Nee — Lee(t)] — YecLcc(t),
Lep(t) =a* [Nep — Lep(t)] — vepLen(2), 2)
Lpp(t) = a*[Npp — Lpp(t)] — Yoo Lpp(1),
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where L;;(t) denotes the actual number of links at time ¢ between individuals adopting strategy
i and individuals adopting strategy j (i, j € {C, D}). In the steady state, the number of links of
each type is given by

L¢c=bccNec,
L¢p = ¢cpNep, (3)

LZD = ¢DDNDD,

where ¢;; = a*(a*+7;;)~" denotes the fraction of active ij-links (i, j € {C, D}). Note that the
stationary configuration of the network depends on the actual strategy configuration of the
population, illustrating the interplay between network evolution and strategy evolution.

The second dynamical process in our model, the strategy dynamics in finite populations,
is defined by the pairwise-comparison rule [18, 69]. At every strategy update event, a randomly
selected individual X imitates a random neighbor Y with probability

p= [1+eﬂ/N(ﬂx—ﬂy)]—l. (4)

The individual Y can be regarded as the role model of X. [Ty (ITy) denotes the total payoff X (Y)
receives after interacting once with every neighbor. The parameter 8 (=0) controls the intensity
of selection. When g is large, the imitation process is driven mainly by the payoff values that
the individuals acquire. The game becomes progressively less important for decreasing .

In the following, we assume that the network dynamics proceed much faster than the
strategy dynamics (7, < 7). In this limit, the network always reaches a stationary configuration
before a strategy update event occurs. The expected payoff of Cs and Ds during strategy update
events is therefore given by

¢ = R ¢pcc(k — 1)+ S ¢dep(N — k),
H*D =T ¢CDk+P ¢DD(N_k_ 1)

These payoff values correspond to those obtained in a well-mixed population (complete
network) with the same strategy configuration, but using the following rescaled payoff
matrix [55, 56],

(&)

C D C D
,_C (R 8§\ _ C (Rpcc SoPcp
M=p ( / P’) =D <T¢CD Poon)’ ©)
The network dynamics not only affect the payoffs individuals acquire but also influence the
imitation process. Some individuals will act more often as a role model than others, depending
on their strategy. In section 3, we show that such differences can have a profound effect on the

strategy dynamics.
If 7, < t,, a D will select a C as his role model with probability

Pcpk
dcpk +dpp(N —k — 1)
The term in the numerator corresponds to the average number of CD-links of each D, whereas

the term in the denominator reflects the average total number of links of each D. The overall
probability that the number of Cs will increase during a strategy update event equals

T+:N—k dcpk
¢ N ¢epk+¢ppp(N —k —1)

(7

[1+ef/NIp=To =1 (8)
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Similarly, the number of Cs will decrease with probability

T = f ¢cp(N —k) [1+e BN -1 9)
N ¢cp(N — k) + bk — 1)
In well-mixed populations (¢cc = ¢pcp = ¢pp = 1), the difference

L N _ kZ—k b B _. . !
gk)y =T —T, =2 tan <N(HD—HC)> (10)
(k €10, N[) [69] can be regarded as a finite population analogue of the gradient of selection
associated with the replicator equation in infinite, well-mixed populations [2], which is defined
as x =x(1 —x)(Il¢ — Ip), where x € [0, 1] stands for the fraction of cooperators. In both
cases, Cs are favored over Ds when g(k) > 0 (X > 0), whereas the opposite is true whenever
gk)y <0(x <0).

It is noteworthy that we consider the evolutionary dynamics as a discrete stochastic system
while assuming that the number of links is sufficiently large, so that the linking dynamics can be
described by a set of ordinary differential equations (see equation (2)). Stochastic effects could
be included at the level of the linking dynamics as well, for instance by adopting a discrete
version of the AL model like the one proposed recently by Wu et al [65]. Nevertheless, the
continuous approximation we use here does not weaken the robustness of our conclusions, as
shown in the following section by means of computer simulations (see figure 2(d)).

3. Results and discussion

We investigate how the gradient of selection depends on the selection pressure. To do so, one
can study the shape of g(k) or, alternatively, that of the ratio 2(k) = 7,7/ T,”, which is given by

¢CD(N - k) + ¢CC(k - l)e_ﬂ/N(nB_nz).
$cpk +¢pp(N —k — 1)

As the solutions of g(x) = 0 are sometimes more conveniently obtained solving h(x) =1, we

use both interchangeably. For large N, h(x) can be approximated by

(1—a)x +aeﬁ(u,x+v/)
(a—b)x+b

Wherex:%,a:%,b:@,u’:R’—S’—T’+P’andv’:S’—P’.

Let us start by studying the two limiting cases: the weak selection limit (8 — 0) and the
strong selection limit (8 — 00).

In the limit of strong selection, the direction of the gradient of selection depends solely—
apart from finite size effects—on the sign of u'x + v’ (see appendix A). g(x) will therefore
exhibit one of four possible shapes (see figure 1), depending on the ordering of the payoff values
of the transformed game M'. When R’ > T’ and S’ > P’, g(x) is positive for all x € ]0, 1[. This
scenario is known as C-dominance. Selection will always favor Cs over Ds, irrespective of the
strategy configuration of the population. When R’ < 7’ and S’ < P’, we obtain the opposite
scenario: D-dominance. The gradient of selection now satisfies g(x) <0 for all x € ]0, 1,
implying that Ds are always favored over Cs. When R’ > T’ and S’ < P’, g(x) has a root in

h(k) = (11)

h(x)~ , (12)

P -5
R—T —S+P
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g(x) - (@)| [g()p
wg,.o«f”“"ﬁf »’“’\_}% / \
0 o> 0 e R
0 g(0)>0 1 X 0 g(0)>0
g(1)<0 §(1)>0
gx)p  9(0)<0 (©)| [gx)p 9(0)<0 (d)
g(1)<0 N\ g(1)>0
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Figure 1. The four possible dynamical scenarios defined by two-person
symmetric games in well-mixed populations. In each of the four panels, the curve
represents a typical shape of the fitness difference g(x) between Cs and Ds for a
given fraction x of Cs. The roots of g(x) are the fixed points of the evolutionary
dynamics. Stable fixed points are depicted using solid circles and unstable fixed
points using open circles. Arrows indicate the expected direction of evolution.
Cs (Ds) are favored over Ds (Cs) when the arrow points to the right (left). The
particular shape of g(x) can be inferred from the sign of the derivative of g in 0
and in 1.

Furthermore, g(x) <0 for x < x* and g(x) > 0 for x > x*. When the initial fraction of Cs is
smaller than x*, evolution favors Cs. Otherwise, Ds will be favored. This is an example of
coordination or bistability. Finally, when R’ < T’ and S’ > P’, evolution favors a mixture of
Cs and Ds. The gradient g(x) has a root in x* again, but unlike before, selection favors Cs for
x < x* and Ds for x > x*. Note that one has to correct for self-interactions when computing the
finite population analogue of the equilibrium point x*. The resulting equilibrium k* is given by

k* 1 P—R

— = (14)
N NT—-S—R+P
In the other limit, that of weak selection, we have
11— +
lim h(x) = L Dx*+a (15)
B—0 (a—b)x+b

Because this function is monotonic in x, h(x) =1 can have at most one solution and
consequently the gradient g(x) can have at most one root in ]0, 1{. Hence, g(x) exhibits one
of the four shapes shown in figure 1. The particular type of shape that occurs depends on the
parameters a and b.

In the following, we assume that links between Cs satisfy both individuals and therefore
last longer than other links. Two interacting Ds, on the other hand, are both dissatisfied and
prefer to break their connection quickly. Following the same reasoning, Cs would like to
break CD-links quickly, whereas Ds prefer to keep such links as long as possible. Hence, on
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average, CD-links will have a longer time span than DD-links, but a shorter one than CC-links.
Altogether, we obtain the following ordering for the fractions of active links of each type,

$cc > $cp > $pp, (16)
which is equivalent to
1>a>b. (17)

This condition ensures that 4(x) > 1 for all x € ]0, 1[. Hence, Cs are dominant in the limit of
weak selection, irrespective of the game being played.

Having considered the two limiting cases, we now study the gradient of selection for
general values of B. In appendix B, we show that g(x) can have either zero, one or two internal
equilibria, depending on the parameter settings. First we discuss examples where the specific
intensity of selection leads to a scenario with at most one internal equilibrium. Next we will
see that some parameter combinations lead to a scenario with two internal equilibria, which can
never occur in the limits of either weak or strong selection.

We reduce the complexity of the game space by normalizing the difference between R
and P to 1, taking R =2 and P = 1. The contours in figure 2 depict the sign of g(k) for
three different D-dominance games, using o = 0.8, ycc = 0.4, ycp =0.5 and ypp =0.6. In
the weak selection limit, these birth/death rates of links lead to dominance of Cs, irrespective
of the original payoff matrix. The strong selection limit leads to different scenarios, depending
on the original game. For instance, S = 0.5 and 7 = 2.1 results in bistability (see figure 2(a),
S =0.9and T =2.5 in coexistence of Cs and Ds (see figure 2(b)), and S =0.5and 7 = 2.5 in
D-dominance (see figure 2(c)). Hence, there exist critical values of 8 at which the number of
internal equilibria changes. We can compute these critical values using the derivative of g(x)
in 0 and in 1 (see also figure 1). These derivatives are given by

bco

2(0) = ¢_[1 +eP PO (14 PP (18)
DD

g() = ?[1 +ef BT [ 4 e PR (19)
cC

Assuming at most one internal equilibrium, we obtain C-dominance (D-dominance) when both
£(0) and g(1) are larger (smaller) than zero. Bistability occurs when £(0) <0 and g(1) > 0,
and coexistence when ¢(0) > 0 and g(1) < 0. From equation (18), it follows that ¢(0) > 0O if
and only if

1n<¢’ﬂ) > B (P -9, (20)
épp
and that g(1) > 0 if and only if
d)CD / /
Inf — ) >B (R -T). 21
bcc
This means that ¢(0) will be positive for 8 smaller than
_ o Pep -l
Bo=In[ = | (P' =57}, (22)
bcp
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Figure 2. The intensity of selection determines the shape of the gradient of
selection. (a—c) Each of the contour plots shows the sign of the fitness difference
g(k), k being the number of Cs in a network of size N, as a function of .
Regions where g(k) > 0 (g(k) < 0) are indicated in gray (black). Solid white
lines indicate where g(k) =0. In each of the three panels, the individuals
engage in a different D-dominance game: panel (a) shows g(k) for § = 0.5 and
T =2.1, panel (b) for S =0.9 and T =2.5 and, finally, panel (c) for S =0.5
and 7 =2.5. The other two payoff values are normalized to R =2 and P = 1.
The network dynamics transform the game so that for f§ — oco, we obtain an
unstable equilbrium £* in panel (a), a stable equilibrium k* in panel (b) and a
D-dominance situation in panel (c¢). Reducing 8 eventually makes cooperation
dominant, irrespective of the original game being played. The dotted vertical
lines, indicated by By and S, show the analytical predictions for g at which
the sign changes of ¢(0) and £(1), respectively. (d) Circles (lines) show the
probability, obtained in simulation (analytically), to reach 100% cooperation,
starting from a population with 50% C’s. We use T = 10~* as the relative time
scale for network dynamics. Individuals engage in the same game as in panel (c).
In all four panels, we use ycc = 0.4, yep = 0.5, ypp = 0.6, = 0.8 and N = 100.

and negative otherwise. Similarly, g(1) is positive for 8 smaller than

B Eln(@) (R —=T)7}, (23)

bcc

and negative otherwise. Both By and B, are indicated by vertical dotted lines in figure 2. They
correspond clearly to the values of 8 at which each of the game transitions takes place.

We further confirm the validity of the analytical results by means of computer simulations.

Figure 2(d) shows the probability, as a function of B, that a population with initially 50%

cooperators evolves to full cooperation. Circles, representing simulation results, fit nicely with
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the analytical predictions, which are indicated by a solid line. Each simulation starts with a
complete network of size N =100, 50% of them being Cs, and runs until the population
fixates into either full cooperation or full defection. Strategy and network structure evolve
simultaneously under asynchronous updating. Strategy update events take place with probability
(1+7)"", where t = z— = 1073; network update events occur otherwise. We run 10* simulations
for each value of B and plot the fraction of runs that end in full cooperation. The analytical
predictions are calculated using the following formula [69],

T7

1+Z 1_[] lT+
T—’

1+Z l_[] lT+

with i being equal to 50. The expressions for 7" and T;” are given by equations (8) and (9).
Earlier in this section, we showed that there can be at most one internal equilibrium for
the limiting cases f§ — 0 and B — oo. At intermediate intensities of selection, two internal
equilibria can, however, occur simultaneously (see also appendix B). Figure 3 shows two
examples where this is the case. The upper two panels correspond to a scenario where Cs are
expected to disappear from the population in case they are rare. If a sufficiently large fraction
of Cs is present, however, a mixture of Cs and Ds is favored. The lower two panels illustrate an

example of the opposite scenario, in which Ds are expected to go extinct when they are rare.

i = (24)

4. Conclusion

In this paper, we have explored, both analytically and numerically, the evolution of cooperation
in dynamical networks that evolve side by side with individuals’ behavior, the evolution of
the network structure being affected by the dynamics of the individuals and vice versa. We
indicate that the adaptive nature of the network of contacts affects both the average payoff
associated with each game strategy and the likelihood for each of the different strategies to
serve as a role model. The intensity of selection, which controls the contribution of game
payoff to fitness, regulates the importance of each of these two effects in the final outcome of
strategy evolution. When the intensity of selection is strong, the payoff transformation resulting
from the network dynamics provides the dominating contribution to evolution. Weakening the
intensity of selection enhances the effect of the adaptive imitation network. By doing so, one
is able to effectively transform a D-dominance dilemma into any of the conventional 2 x 2
symmetric games. We derive analytical conditions, valid under the assumption that there is
only one internal equilibrium, that predict which range of intensities of selection leads to which
game scenario. We show also that certain parameter combinations may lead to the occurrence of
two internal equilibria at intermediate intensities of selection. Our results clearly demonstrate
the relevance of the intensity of selection when evolution proceeds on an adaptive structured
population. Furthermore, we indicate the conditions under which this coupled dynamics work
as an efficient mechanism for the promotion of cooperative behavior.
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Figure 3. Two internal equilibria at intermediate intensities of selection. The
contour plots show the sign of the fitness difference g(k), like in figure 2. In
(a), we use the parameters R =2, S =-9,T =40, P =1,a =0.2, ycc = 0.04,
vep = 0.46, ypp =0.85 and N = 100. Two internal equilibria take place at
intermediate intensities of selection. The equilibrium closest to full defection
is unstable and the other one is stable. This is emphasized in (b), where we zoom
in on the actual gradient g (k) for 8 = 1.0. Panels (c) and (d) show the same plots,
butusing R=2,S=-8,T=3,P=1,a=0.02, yoc = 107>, yep =6 % 1074,
vpp = 0.9 and N = 100. The equilibrium closest to full defection is now stable,
while the other one is unstable.

Appendix A. The strong selection limit

The following inequality holds,

(1—a)x +aeﬂ(u/x+v/)

lim A(x) = li Al
P = e T x b @A
<K ﬂlim efulxr) (A.2)

where K > 0 is a constant, whose specific value depends on the parameters a and b. Therefore,

oo (ux+v >0),
lim h(x) = (A.3)
p—o0 0 (Wx+v <0).
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Hence, the direction of the gradient of selection depends solely on the sign of u'x +v'. Cs are
favored over Ds if and only if u'x + v' > 0.

Appendix B. General intensities of selection

Let us designate the rational factor in equation (12) by 4;(x) and the exponential factor by
h>(x). Both h{(x) and h,(x) are monotonic in x:

. . d . . b—a?
e The derivative 7 -h;(x)is given by I
b > a? and decreases monotonically if b < a?.

Hence, h;(x) increases monotonically if

e The derivative %hz(x)is given by u’ e+ Hence, h,(x) increases monotonically if u’ > 0
and decreases monotonically if u’ < 0.

h(x) increases (decreases) monotonically in case both /;(x) and h,(x) increase (decrease)
monotonically. Hence, if a> < b and u’ > 0 (or a®> > b and u’ < 0), then g(x) can have at most
one root in |0, 1[. If 4;(x) increases (decreases) while /,(x) decreases (increases), then g(x)
can have at most two roots in ]0, 1[.
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