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The majority of patients with chronic 
myeloid leukemia in early chronic 

phase (CML-ECP) who are treated with 
imatinib achieve a complete cytogenetic 
response with a significant reduction 
in the risk of progression to advanced 
phases. Recent studies show that therapy 
of CML-ECP with nilotinib leads to a 
faster and deeper response compared to 
imatinib. However, in vitro data indi-
cates that there is no detectable difference 
in inhibition of signaling downstream 
of Bcr-Abl between the two agents, and 
that neither drug induces apoptosis of 
CML CD34+ cells. We use a computa-
tional model of hematopoiesis and CML 
combined with serial quantitative data of 
disease burden under imatinib and nilo-
tinib therapy to explain this apparent 
disconnect between in vivo and in vitro 
responses. We show how a subtle differ-
ence in the differentiation rate of CML 
cells under therapy with either agent, 
with marginal impact onto the in vitro 
studies, translates into a significantly 
different reproductive fitness of treated 
cells in vivo, providing a sizeable dif-
ference, hence providing an explanation 
for the superior response observed with 
nilotinib. � � � � � � � � � � � �
The advent of tyrosine kinase inhibitors 
(TKI) has brought a paradigm shift in 
the therapy of chronic myeloid leukemia 
(CML). Imatinib is the current stan-
dard of care for patients in early chronic 
phase (ECP); most patients respond to 
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therapy, and the risk of treatment failure 
is low.1 However, some patients develop 
resistance to imatinib due to a variety of 
mechanisms, including point mutations 
in the Abl kinase and overexpression of 
Bcr-Abl.2 Imatinib is not the cause of 
these mutations but simply selects for 
the resistant clones that may be present 
even at diagnosis and before exposure 
to the drug3,4 or that may emerge dur-
ing therapy. Therefore, novel TKI agents 
have been developed that can inhibit 
Bcr-Abl even in the presence of many 
imatinib resistant mutations.5 In vitro, 
nilotinib has a higher affinity for Bcr-Abl 
compared to imatinib, but it does not 
lead to enhanced inhibition of signaling 
downstream of Bcr-Abl.6,7 Neither ima-
tinib nor nilotinib increase apoptosis of 
CML-derived CD34+ cells.6 However, 
therapy of CML-ECP with nilotinib 
leads to a faster and deeper reduction in 
tumor burden compared with imatinib.8,9 
In the following, we provide a potential 
explanation for this apparent disconnect 
between the in vitro and in vivo results.	 
 � � � � �
In order to understand the differences 
observed in the response dynamics of 
CML-ECP under either imatinib or 
nilotinib therapy, we fitted our model of 
hematopoiesis10 to clinical data derived 
from two patient cohorts treated with 
either of these agents (Fig. 1A).8,11 The 
data from the IRIS trial11 was trun-
cated to 2 years to make the comparison 
with the more limited data on nilotinib 
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in accord with lab data.6,14 Yet, this dif-
ference alone cannot explain the deeper 
reduction in disease burden observed 
with nilotinib (see Fig. 1A). Our fitting 
further reveals that nilotinib increases 
the probability of differentiation of CML 
progenitors ε

NIL
= 0.932 (0.907–0.946) 

compared to imatinib, ε
IMAT

 = 0.889 
(0.881–0.893).10

of CD34+ cells.6 Our results show that 
only a small fraction of CML cells are 
responding to therapy (z) at any time:

z
NIL

 = 0.083 (0.083–0.084), while 
the corresponding fraction for imatinib 
is z

IMAT
 = 0.046 (0.046–0.047).10 The 

difference between the two agents sug-
gests that nilotinib has a higher affinity 
for Bcr-Abl, leading to a faster response, 

easier to visualize. This truncation had 
no impact on the parameter estima-
tion. We determined (1) the fraction of 
CML cells responding to treatment with 
either agent (z

IMAT
 and z

NIL
) and (2) the 

impact of therapy on the differentiation 
probability of each type of treated cells 
(ε

IMAT
 and ε

NIL
),12,13 given that neither 

imatinib nor nilotinib enhance apoptosis 

Figure 1. (A) Dynamics of response in patients with early chronic phase CML treated with imatinib or nilotinib.8,11 Nilotinib results in a faster and 

deeper response compared to imatinib. (B) The di!erence in response is due to a more e!ective reduction in reproductive "tness of CML cells with 

nilotinib compared with imatinib. Normal hematopoietic cells have relative "tness 1.
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response should further reduce the prob-
ability of acquired resistance and pro-
gression to blast crisis as reported in the 
ENESTnd study.9
 
 � � � � �
Clinical data. The results of a Phase 2 trial 
of nilotinib as primary therapy of patients 
with CML-ECP were reported recently in 
reference 8. Expression of BCR-ABL/ABL 
was serially determined by Q-RT-PCR for 
each patient after 1, 2, 3, 6, 9, 12 months 
and every 3 months thereafter, starting at 
the time of diagnosis.

Mathematical modeling. We resort to 
our mathematical description of hemato-
poiesis,26 which has been applied to under-
stand CML dynamics before and during 
imatinib therapy.10,21 Briefly, hematopoie-
sis is described as a hierarchical branching 
process where cells divide and differenti-
ate. These two processes are coupled sto-
chastic events. In order to keep track of all 
levels of cell differentiation, cells in differ-
ent stages of differentiation are considered 
to occupy hypothetical compartments 
that are coupled together, such that, under 
normal hematopoiesis, each compart-
ment on average has a constant number 
of cells. Compartments are identified by 
an index k, such that k = 0 corresponds to 
the stem cell compartment. When a cell 
in compartment k > 0 (downstream of the 
hematopoietic stem cell pool) is selected 
for replication with probability ε, both 
daughter cells differentiate and move to 
next downstream compartment (k + 1), 
while with probability 1 - ε, the cell self 
renews and hence remains in the same 
compartment. Differentiation leads to the 
net loss of one cell from the compartment, 
while self renewal increases the number 
of cells by one in the original compart-
ment. Since differentiation is more likely 
than self-renewal (ε > 0.5), there is net cell 
loss from one compartment, and the lost 
cells are replaced by transfer of cells from 
the next upstream compartment (k - 1). 
This process continues all the way to the 
HSC pool that maintains hematopoiesis 
(k = 0). Cells in a specific compartment 
replicate at rate r

k
. All cell behavior is sto-

chastic, compatible with the current view 
of hematopoiesis,27,28 although for large 
cell populations, the dynamics can be well 

It is the environment that selects for or 
against a clone and this environment is 
very difficult to reproduce in vitro, illus-
trating the challenges of extrapolating 
from in vitro studies to the in vivo situ-
ation. Although nilotinib therapy could 
suppress pre-existing imatinib resistant 
clones and the fraction of cells responding 
to therapy is slightly higher, these features 
cannot account for the observed differ-
ences in response dynamics.

Based on recent experimental evidence 
that suggests that Bcr-Abl expression does 
not give a fitness advantage to CML stem 
cells,20 our modeling approach assumes 
that this population of cells follows neutral 
drift.16,21,22 This in part explains why the 
population of CML stem cells is small and 
is compatible with the view that, although 
the disease is derived from a hematopoietic 
stem cell, it is driven by progenitor cells.23 
Cell dynamics under neutral drift (a con-
sequence of the lack of a fitness advantage 
of the CML stem cell compared to normal 
hematopoietic stem cells) also influences 
CML therapy, since in the absence of 
acquired resistance, there is a fair chance 
that the CML stem cell clone will be sto-
chastically eliminated.10 Recent observa-
tions show that with continued therapy, 
patients lose the population of CML stem 
cells,24 and perhaps they can be cured even 
in the absence of a therapy that directly 
affects the CML stem cell. Given the 
superiority of nilotinib compared to ima-
tinib, we expect a faster elimination of the 
CML progenitors.

In conclusion, we provide evidence that 
a small difference in the differentiation 
probability of CML cells under nilotinib 
versus imatinib therapy can be the main 
reason for the deeper responses observed 
with the former agent. Such small differ-
ences may be difficult to detect in vitro. 
Yet, as shown here, they have significant 
implications on the reproductive fitness 
of treated cells compared to normal cells. 
Given that the risk of acquired resistance 
and transformation is proportional to 
the population of progenitor cells at risk, 
and the main source of blast crisis is the 
CFU-GM population,25 from an evolu-
tionary perspective, our model suggests 
that it makes sense to utilize nilotinib as 
a first line agent. More rapid reduction 
in disease burden together with a deeper 

� � � � � � � � � �
Clonal expansion is an evolutionary pro-
cess driven by differences in cell division. 
Cells with a probability of differentia-
tion larger than normal effectively have 
a reduced fitness compared to normal 
cells.15 Thus, a drug that increases the 
differentiation rate imposes a relative 
fitness disadvantage on that clone. Such 
a clone will eventually be washed out. 
The relative fitness of any type of cancer 
cells ( f

C
) compared to the fitness of nor-

mal cells ( f
N
 = 1) can be estimated by

  
where C defines the specific therapy 
given to the cell.16 Without therapy, the 
relative fitness advantage of CML pro-
genitors is f

CML
 = 2.16 (2.02–2.45).16 

The fitness of CML cells under ther-
apy using ε

NIL
 and ε

IMAT
 and estimated 

above yields f
NIL

 = 0.41 (0.317–0.57) and 
f

IMAT
 = 0.69 (0.67–0.75), respectively 

(Fig. 1B). Therefore, therapy reduces the 
relative fitness of CML cells compared 
to both untreated and normal cells. 
Moreover, this effect is stronger with 
nilotinib than with imatinib by as much 
as ~40%, providing an explanation for 
the deeper response obtained with nilo-
tinib. It may sound surprising that a drug 
inhibiting an oncogene can reduce the 
impact of that gene to levels below that of 
normal cells. However, available experi-
mental data confirms this possibility; 
imatinib effectively reduces the ampli-
fication (self-renewal) of CML-derived 
CFU-GM to subnormal levels com-
pared to Ph’ negative CFU-GM cells in 
vitro17 and is an example of “oncogene 
addiction.”18,19

At a cellular level, the change in ε
C
 is 

less than 5% (ε
NIL

 = 0.932; ε
IMAT

 = 0.889), 
explaining perhaps the difficulty in observ-
ing differences in cell behavior in vitro.7 
However, when such cellular properties 
are placed in the proper evolutionary con-
text (that is, in competition with other cell 
lineages), the full impact of various thera-
pies on CML dynamics becomes clear. 
Minor variations in cell differentiation as 
a result of therapy can have an important 
impact on the evolutionary dynamics of 
the population and therapeutic outcome. 
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shown previously, the lack of any effect of 
TKI therapy on the leukemic stem cells is 
compatible with the continued response 
to TKI therapy, and, therefore, there is 
no need to assume or impose that TKI 
therapy affects the leukemic stem cell pool 
directly.11 The scatter in both parameters 
was determined by allowing the time to 
diagnosis to vary by 25% in either direc-
tion (to cover 3.54– 5.90 years), consider-
ing a mean time to diagnosis of 4.7 years33 
and accomplished by varying ε

CML
 

between 0.69–0.73.
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