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Preventing global warming is a public good requiring overall cooperation. Contributions 
will depend on the risk of future losses, which plays a key role in decision-making. Here, 
we discuss an evolutionary game theoretical model in which decisions within small 
groups under high risk and stringent requirements toward success significantly raise the 
chances of coordinating to save the planet’s climate, thus escaping the tragedy of the 
commons. We discuss both deterministic dynamics in infinite populations, and stochastic 
dynamics in finite populations. 

 

1.   Introduction  

In a dance that repeats itself cyclically, countries and citizens raise 
significant expectations every time a new International Environmental Summit 
is settled. Unfortunately, few solutions have come out of these colossal and 
flashy meetings, challenging our current understanding and models on decision-
making, so that more effective levels of discussion, agreements and coordination 
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become accessible. From Montreal and Kyoto to Copenhagen summits, it is by 
now clear how difficult it is to coordinate efforts [1, 2]. Often, individuals, 
regions or nations opt to be free riders, hoping to benefit from the efforts of 
others while choosing not to make any effort themselves. Cooperation problems 
faced by humans often share this setting, in which the immediate advantage of 
free riding drives the population into the tragedy of the commons [3], the 
ultimate limit of widespread defection [3-12].  

To address this and other cooperation conundrums, ubiquitous at all scales 
and levels of complexity, the last decades have witnessed the discovery of 
several core mechanisms responsible to promote and maintain cooperation at 
different levels of organization [3, 5, 10, 13-26]. Most of these key principles 
have been studied within the framework of two-person dilemmas such as the 
Prisoner’s Dilemma, which constitutes a powerful metaphor to describe 
conflicting situations often encountered in the natural and social sciences. Many 
real-life situations, however, are associated with collective action based on joint 
decisions made by a group often involving more than two individuals [3, 5, 13, 
27]. These types of problems are best dealt-with in the framework of N-person 
dilemmas and Public Goods games, involving a much larger complexity that 
only recently started to be unveiled [5, 14, 22, 28-33]. The welfare of our planet 
accounts for possibly the most important and paradigmatic example of a public 
good: a global good from which everyone profits, whether or not they contribute 
to maintain it.  

     One of the most distinctive features of this complex problem, only 
recently tested and confirmed by means of actual experiments [9], is the role 
played by the perception of risk that accrues to all actors involved when making 
a decision. Indeed, experiments confirm the intuition that the risk of collective 
failure plays central role in dealing with climate change. Up to now, the role of 
risk has remained elusive [1, 2, 11]. Additionally, it is also unclear what is the 
ideal scale or size of the population engaging in climate summits — whether 
game participants are world citizens, regions or country leaders —, such that the 
chances of cooperation are maximized. Here we address these two issues in the 
context of game theory and population dynamics. 

   The conventional public goods game – the so-called N-person Prisoner’s 
Dilemma – involve a group of N individuals, who can be either Cooperators (C) 
or Defectors (D). Cs contribute a cost ”c” to the public good, whereas Ds refuse 
to do so. The accumulated contribution is multiplied by an enhancement factor 
that returns equally shared among all individuals of the group. This implies a 
collective return which increases linearly with the number of contributors, a 
situation that contrasts with many real situations in which performing a given 
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task requires the cooperation of a minimum number of individuals of that group 
[28-30, 33-38]. This is the case in international environmental agreements which 
demand a minimum number of ratifications to come into practice [1, 2, 9, 39-
42], but examples abound where a minimum number of individuals, which does 
not necessarily equal the entire group, must simultaneously cooperate before any 
outcome (or public good) is produced [28, 29]. Furthermore, it is by now clear 
that the N-person Prisoner’s Dilemma fails short to encompass the role of risk, 
as much as the non-linearity of most collective action problems. 

Here we address these problems resorting to a simple mathematical model, 
adopting unusual concepts within political and sustainability science research, 
such as peer-influence and evolutionary game theory [14, 43, 44]. As a result we 
encompass several of the key elements stated before regarding the climate 
change conundrum in a single dynamical model.  

In the following we show how small groups under high risk and stringent 
requirements toward collective success significantly raise the chances of 
coordinating to save the planet’s climate, thus escaping the tragedy of the 
commons. In other words, global cooperation is dependent on how aware 
individuals are concerning the risks of collective failure and on the pre-defined 
premises needed to accomplish a climate agreement. Moreover, we will show 
that to achieve stable levels of cooperation, an initial critical mass of cooperators 
is needed, which will then be seen as role models and foster cooperation.  

We will start by presenting the model in Section 2. In Section 3 we discuss 
the situation in which evolution is deterministic and proceeds in very large 
populations. In Section 4 we analyze the evolutionary dynamics of the same 
dilemma in finite populations under errors and behavioral mutations. Finally, in 
Section 5 we provide a summary and concluding remarks.  

 

2.   Model 

Let us consider a large population of size Z, in which individuals engage in 
a N-person dilemma, where each individual is able to contribute or not to a 
common good, i.e., to cooperate or to defect, respectively. Game participants 
have each an initial endowment b. Cooperators (Cs) contribute a fraction c of 
their endowment, while defectors (Ds) do not contribute. As previously stated, 
irrespectively of the scale at which agreements are tried, most demand a 
minimum number of contributors to come into practice. Hence, whenever parties 
fail to achieve a previously defined minimum of contributions, they may fail to 
achieve the goals of such agreement (which can also be understood as the 
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benefit “b”), being this outcome, in the worst possible case, associated with an 
appalling doomsday scenario. To encompass this feature in the model we require 
a minimum collective investment to ensure success: If the group of size N does 
not contain at least M Cs (or, equivalently, a collective effort of Mcb), all 
members will lose their remaining endowments with a probability r (the risk); 
otherwise everyone will keep whatever they have. Hence, M<N represents a 
coordination threshold [9, 28], necessary to achieve a collective benefit. As a 
result, the average payoff of a D in a group of size N and k Cs can be written as 

! 

"D (k) = b # (k $M ) + (1$ r) 1$# (k $M )[ ]{ } ,                       (1) 

where 

! 

" (x)  is the Heaviside step function (

! 

" (x < 0) = 0  and 

! 

" (x # 0) = 1). 
Similarly, the average payoff of a C is given by  

! 

"C (k) = "D (k) # cb .                                        (2) 

The risk r is here introduced as a probability, such that with probability (1-r) the 
benefit will be collected independent of the number of contributors in a group. 

This collective-risk dilemma represents a simplified version of the game 
used in the experiments performed by Milinski et al [9] on the issue of the 
mitigation of the effects of climate change,  a framework which is by no means 
the standard approach to deal with International Environmental Agreements and 
other problems of the same kind [1, 2, 39, 40]. The present formalism has the 
virtue of depicting black on white the importance of risk and its assessment in 
dealing with climate change, something that Heal et al [41, 45] have been 
conjecturing for quite a while. At the same time, contrary to the experiments in 
[9], our analysis is general and not restricted to a given group size.  

Additionally, and unlike most treatments [1], our analysis will not rely on 
individual or collective rationality. Instead, our model relies on evolutionary 
game theory combined with one-shot public goods games, in which errors are 
allowed. In fact, our model includes what we believe are key factors in any real 
setting, such as bounded rational individual behavior, peer-influence and the 
importance of risk assessment in meeting the goals defined from the outset.  

We assume that individuals tend to copy others whenever these appear to be 
more successful. Contrary to strategies defined by a contingency plan which, as 
argued before [46], are unlikely to be maintained for a long time scale, this 
social learning (or evolutionary) approach allows policies to change as time goes 
by [22, 47, 48], and likely these policies will be influenced by the behavior (and 
achievements) of others, as previously shown in the context of donations to 
public goods [44, 49, 50]. This also takes into account the fact that agreements 
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may be vulnerable to renegotiation, as individuals may agree on intermediate 
goals or assess actual and future consequences of their choices to revise their 
position [1, 2, 7, 39, 40, 45]. 

3.   Evolution of collective action in large populations 

In the framework of evolutionary game theory, the evolution or social 
learning dynamics of the fraction x of Cs (and 1-x of Ds) in a large population 
(

! 

Z"#) is governed by the gradient of selection associated with the replicator 
dynamics equation [14, 28, 51] 

€ 

g(x) ≡ ˙ x = x 1− x( ) fC (x) − fD (x)( )  ,                                   (3) 

which characterizes the behavioral dynamics of the population, where fC (fD) is 
the fitness of Cs (Ds), here associated with the game payoffs. According to the 
replicator equation, Cs (Ds) will increase in the population whenever g(x)>0 
(g(x)<0). If one assumes an unstructured population, where every individual can 
potentially interact with everyone else, the fitness (or social success) of each 
individual can be obtained from a random sampling of groups. The latter leads 
to groups whose composition follows a binomial distribution. Hence, we may 
write the fitness of Cs,

! 

fC , and Ds,

! 

fD , as [28-30]  

€ 

fC (x) =
N −1
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k=0

N −1

∑ xk (1− x)N −1−kΠC (k +1)                            (4a) 

and  

€ 

fD (x) =
N −1
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k=0

N −1

∑ xk (1− x)N −1−kΠD (k)  ,                             (4b) 

where 

! 

"C (k)(

! 

"D (k)) stands for the payoff of a C (D) in a group of size N and k 
Cs, as defined above in equations (1) and (2). 

Fig. 1 shows that, in the absence of risk, g(x) is always negative. Risk, in 
turn, leads to the emergence of two mixed internal equilibria, rendering 
cooperation viable: for finite risk r, both Cs (for x<xL) and Ds (for x>xR) 
become disadvantageous when rare. Co-existence between Cs and Ds becomes 
stable at a fraction xR which increases with r. Collective coordination becomes 
easier to achieve under high-risk and, once the coordination barrier (xL) is 
overcome, high levels of cooperation will be reached.  

The appearance of two internal equilibria under risk can be studied 
analytically, as the roots of the fitness difference 

! 

Q(x) " fC (x) # fD (x)  
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determines the occurrence of non-trivial equilibria of the replicator dynamics. 
From the equations above we may write, after some algebra, that  

! 

Q(x) = b
N "1
M "1
# 

$ 
% 

& 

' 
( x M "1 (1" x)N"M r " c

) 

* 
+ 

, 

- 
.  .                         (5) 

    Defining the cost-to-risk ratio 

! 

" = c r , i.e., the ratio between the fraction 
of the initial budget invested by every C and the risk of losing it, the sign of Q(x) 
is conveniently analyzed by using the polynomial  

€ 

p(x) =
N −1
M −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ xM −1(1− x)N −M − γ ,                            (6) 

which, in turn, can be used to determine the critical value 

! 

"  below which an 
interior fixed point 

! 

x*" (0,1)  emerges. Indeed, we can prove the following 
theorem. 
 

 
Fig. 1. For each fraction of Cs, if the gradient g(x) is positive (negative) the fraction of Cs will 
increase (decrease). Increasing risk (r) modifies the population dynamics rendering cooperation 
viable depending on the initial fraction of Cs (N=6, M=3 and c=0.1). 
 

Theorem 1. Let 

! 

"(x) =
N #1
M #1
$ 

% 
& 

' 

( 
) x M #1 (1# x)N#M . For 1<M<N, there exists a 

critical cost-to-risk ratio 

! 

" = #(x ) > 0  and fraction of Cs 

! 

0 < x < 1 such that 
1. If 

! 

" > " , the evolutionary dynamics has no interior equilibria. 
2. If 

! 

" = " , then 

! 

x  is a unique interior equilibrium, being this 
equilibrium unstable.  

3. If 

! 

" < " , there are two interior equilibria 

! 

{xL , xR} , such that 

! 

xL < x < xR , 

! 

xL  is unstable and 

! 

xR  stable.  
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Proof. Let us start by noticing that 

! 

d "(x)
dx

= #
N #1
M #1
$ 

% 
& 

' 

( 
) x M #2 (1# x)N#M #1 s(x), 

where 

! 

s(x) = 1+ (N "1)x "M . Since 

! 

N > 2  and 

! 

1< M < N , then 

! 

d "(x) /dx  
has a single internal root for 

! 

x = (M "1) /(N "1) . In addition, s(x) is negative 
(positive) for 

! 

x < x  (

! 

x > x ), which means that 

! 

"  has a global maximum for 

! 

x = x .  
1) and 2) can now easily follow. Since 

! 

"  has a maximum at 

! 

x , it follows that 

€ 

Γ(x) = 0 has no solutions for 

! 

" > "  and a single one, at 

! 

x , for 

! 

" = " . Moreover, 
both when 

! 

x" 0  and 

! 

x" 1, 

€ 

p(x) < 0, making 

€ 

x = 0 a stable fixed point and 

€ 

x = 1 an unstable one. Therefore, if 

! 

x  is a root, it must be unstable.  
To prove c), we start by noticing that 

€ 

Γ(0) = Γ(1) = 0 . From the sign of s(x) (see 
above), 

! 

"(x)  is clearly monotonic increasing (decreasing) to the left (right) of 

! 

x . Hence, there is a single root 

! 

xL  

! 

(xR )  in the interval 

! 

0 < x < x  (

! 

x < x < 1 ). 
Since 

! 

x = 0 is stable and 

€ 

x = 1 unstable, 

! 

xR  must be stable and 

! 

xL  unstable.  
 

Figure 2. a) Classification of all possible dynamical scenarios when evolving an infinitely large 
population of Cs and Ds as a function of γ, M and N. A fraction x of an infinitely large population 
adopts the strategy C; the remaining fraction 1-x adopts D. The replicator equation describes the 
evolution of x over time. Solid (open) circles represent stable (unstable) equilibria of the 
evolutionary dynamics; arrows indicate the direction of selection. b) Internal roots x* of g(x) for 
different values of the cost-to-risk ratio γ=c/r, at fixed group size (N=6) and different coordination 
thresholds (M). For each value of γ one draws a horizontal line; the intersection of this line with each 
curve gives the value(s) of x*, defining the internal equilibria of the replicator dynamics. The empty 
circle represents an unstable fixed point (xL) and the full circle a stable fixed point (xR) (M=4 and  
γ=0.15 in example).  
 

 

Theorem 2. For 

€ 

M = 1, if 

! 

" < " , there is one stable interior equilibrium point in 
the interval 

€ 

0 < x < 1. 

Proof. If 

€ 

M = 1, 

€ 

Γ(x) = (1− x)N −1, which is a monotonic decreasing function 
for 

€ 

0 < x < 1. This means that the function 

€ 

p(x)  has only one zero in that 

M = N
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interval, i.e., there is only one 

€ 

x (

€ 

0 < x < 1) such that 

€ 

p(x ) = 0 . Given that 

€ 

p(x)  is positive (negative) for 

! 

x < x  (

! 

x > x ) then 

€ 

x is a stable equilibrium 
point. 

Theorem 3. For 

€ 

M = N , if 

! 

" < " , there is one unstable interior equilibrium 
point in the interval 

€ 

0 < x < 1. 

Proof. If 

€ 

M = N , 

€ 

Γ(x) = xN −1 , which is a monotonic increasing function for 

€ 

0 < x < 1. This means that the function 

€ 

p(x)  has only one zero in that interval, 
i.e., there is only one 

€ 

x (

€ 

0 < x < 1) such that 

€ 

p(x ) = 0 . Given that 

€ 

p(x)  is 
negative (positive) for 

! 

x < x  (

! 

x > x ) then 

€ 

x  is an unstable equilibrium point. 

In Fig. 2a, we provide a concise scheme of all possible dynamical scenarios 
that emerge from collective-risk dilemmas, showing how the coordination 
threshold and the level of risk play a central role in dictating the viability of 
cooperation. Fig. 2b also shows the role played by the threshold M: for fixed 
(and low) γ, increasing M will maximize cooperation (increase of 

! 

xR ) at the 
expense of making it more difficult to emerge (increase of 

€ 

xL ). 

4.   Evolution of collective action in small populations 

Real populations are finite and often rather small, contrary to the hypothesis 
underlying the dynamics portrayed in Section 3. In particular, this is the case of 
the famous world summits where group and population sizes are comparable 
and of the order hundreds, as individuals are here associated with nations or 
their respective leaders. For such population sizes, stochastic effects play an 
important role and the deterministic description of the previous section may be 
too simplistic [52].  

   For finite, well-mixed populations of size Z, the binomial sampling in 
equations (4) is replaced by a hyper-geometric sampling (sampling without 
replacement). As a result, the average fitness of Ds and Cs in a population with k 
Cs, is now written as  

€ 

fD (k) =
Z −1
N −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1 k
j
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

j=0

N −1

∑ Z − k −1
N − j −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ΠD ( j)                        (7) 

and  

€ 

fC (k) =
Z −1
N −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1 k −1
j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j=0

N −1

∑ Z − k
N − j −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ΠC ( j +1)  .              (8) 
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respectively. We adopt a stochastic birth-death process [53] combined with the 
pair-wise comparison rule [54] in order to describe the social dynamics of Cs 
(and Ds) in a finite population. Under pair-wise comparison, each individual i 
adopts the strategy of a randomly selected member of the population j with 
probability given by the Fermi function (from statistical physics) 

 

€ 

pij =
1

1+ e−β ( f j − fi )
 .                                        (9)  

Here 

! 

"  controls the intensity of selection. For 

! 

" <<1, selection is weak and 
individual fitness is but a small perturbation to random drift in behavioral space. 
Under this regime one recovers the replicator equation in the limit 

! 

Z"# [54]. 
For arbitrary 

! 

" , the quantity g(x) of Eq. (3), specifying the gradient of selection, 
is replaced in finite populations by [54]  

! 

G (k) "T + (k) #T # (k) =
k
Z
Z # k
Z

tanh $
2

fC (k) # fD (k)[ ]
% 
& 
' 

( 
) 
* 

,          (10) 

where k stands for the total number of Cs in the population and  

  

! 

T ± (k) =
k
Z
Z " k
Z

1+ e! # fC (k )" fD ( k )[ ][ ]
"1

                            (11) 

for the probabilities to increase and decrease the number of Cs in the population.  
 

4.1.   Fixation probabilities 

The fact that, in finite populations, the continuous gradient of selection g(x) 
is replaced by a discrete G(k/Z) has implications in the overall evolutionary 
dynamics of the population. Importantly, in the absence of mutations 
evolutionary dynamics in finite populations will only stop whenever the 
population reaches a monomorphic state [52, 54]. Hence, in addition to the 
analysis of the shape of G(k/Z), often one of the quantities of interest in studying 
the evolutionary dynamics in finite populations is the probability 

! 

"k  that the 
system fixates in a monomorphic cooperative state, starting from, for instance, a 
given number k of Cs. The fixation probability of k Cs (

! 

"k ) depends on the ratio 

€ 

λ j =T − ( j) /T + ( j) , being given by [53]  

€ 

φk = λ j
j=1

i

∏
i=0

k−1

∑ λ j
j=1

i

∏
i=0

Z −1

∑  .                              (12)  
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Under neutral selection (that is, in the limit 

€ 

β → 0) the fixation 
probability trivially reads 

! 

"k
N = k Z , providing a convenient reference point [17, 

53-55]. For a given k, whenever 

! 

"k >"k
N , natural selection will favor cooperative 

behavior, the opposite being true when 

! 

"k <"k
N . 

   In Fig. 3 we plot the fixation probability as a function of the initial 
fraction of Cs for different values of risk, and a population of 50 individuals. 
Even if cooperators remain disadvantageous for a wide range of the discrete 
frequency of Cs (see Fig. 1), the fixation probability of k Cs outperforms 

! 

"k  
(picture as a dashed grey line) for most values of k/Z. This is due to the 
stochastic nature of the imitation process, which allows the fixation of rare 
cooperators, even when they are initially disadvantageous. Hence, even without 
random exploration of strategies [56], simple errors in the imitation process 
(finite β) are enough to overcome the unstable fixed point shown in Fig. 2 and 
reach a more cooperative basin of attraction on the right-hand side of the 
gradient (see below). As a result, for high values of risk and large, but finite, 
populations, cooperation is by far the strategy most favored by evolution 
irrespectively of the initial fraction of cooperators.   

 
 

 
Figure 3.  Evolutionary dynamics for different values of risk in finite populations. In panel a), we 
show the fixation probabilities for different values of risk (r) as a function of the number of Cs 
(Z=50, c=0.1, N=6=2M, β=1.0). In panels b) and c), we show the average number of generations 
(tj/Z) [57, 58] needed to fixate an initial fraction of 0.5 of cooperators, as a function of the intensity 
of selection β (panel b) and population size Z (panel c). We consider the case of maximum risk (r=1) 
for both b) and c) panels and c=0.1, N=6=2M. Even if high risk can turn the fixation of cooperators 
almost certain (as shown in panel a)), the time the population takes to reach such state can be 
arbitrarily long. 
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As discussed above, in finite populations the evolutionary dynamics 

becomes stochastic. Yet, even if fixation in one of the two absorbing states is 
certain (k=0 and k=Z), the time required to reach it can be arbitrarily long. This 
is particularly relevant in the presence of basins of attraction with polymorphic 
stable configurations, which correspond to finite population analogues of co-
existence equilibria in infinite populations. For high intensities of selection 
and/or large populations, the time required for fixation (

€ 

t j ) can increase 
significantly. Following Antal and Scheuring [57], the average number of 
updates 

! 

t j  the population takes to reach full cooperation, starting from j 
cooperators, can be written as [57, 59]  

! 

t j = "t1
#1
# j

$m
m=1

k

% +
k= j

N "1

& # l
T + ( j)l=1

k

& $m
m=l+1

k

%
k= j

N "1

&  ,                      (13a)  

where  

! 

t1 =
" l

T + (l)l=1

k

#
k= j

N $1

% &m
m=l+1

k

#  .                                       (13b) 

This is illustrated in Fig.3b and Fig.3c, where we compute average number of 
generations (

! 

t j /Z ) needed to attain monomorphic cooperative state as a 
function of the intensity of selection and population size, starting from 50% of 
Cs and Ds for a dilemma with highest risk (r=1). These panels clearly indicate 
that even if high risk can turn the fixation of cooperators almost certain (as 
shown in the left panel), the time the population takes to reach such state can be 
arbitrarily long. In other words, while the computation of the fixation 
probabilities can be mathematically attractive, its relevance may be limited for 
large intensities of selection and/or large Z. In other words, the stochastic 
information built in 

! 

"k  shows how unstable roots of G may be irrelevant; 
however, the lack of time information in 

! 

"k  ignores the key role played by the 
stable roots of G.  

Moreover, stochastic effects in finite populations can be of different nature, 
going beyond errors in the imitation process. One can also consider mutations, 
random exploration of strategies or any other reason that leads individuals to 
change their behavior, in addition to social learning by imitation dynamics [56]. 
In the simplest scenario, this creates a modified set of transition probabilities, 
with an additional random factor encoding the probability of a mutation (

! 

µ ) in 
each update step. Under these circumstances, the population will never fixate in 
none of the two possible monomorphic states. 
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4.2.   Stationary distributions 

As discussed in the previous section, the existence of a stable equilibrium 
may turn the analysis of the fixation probability misleading. Not only fixation 
probabilities fail to characterize in a reasonable way the evolutionary dynamics 
under general conditions, if one considers other forms of stochastic effects as 
random exploration of strategies, the system will never fixate.  

A proper alternative which overcomes the drawbacks identified in both 

! 

"k  
and G consists in the analysis of the stationary distributions of the complete 
Markov chain P(k/Z) (of size Z+1). The probabilities entering the tridiagonal 
transition matrix 

! 

S = pij[ ]
T

 are defined as 

! 

pk ,k±1 =Tµ
± (k)  and 

! 

pk ,k = 1" pk ,k"1 " pk ,k+1, where 

! 

Tµ
±  stands for the transition probabilities for an 

arbitrary mutation rate µ, which are given by 

! 

Tµ
+ (k) = 1" µ( )T + (k) + µ Z " k( ) Z  

for the probability to increase from k to k+1 Cs and 

! 

Tµ
"(k) = 1" µ( )T "(k) + µ k Z  

for the probability to decrease to k-1 [56]. The stationary distribution is then 
obtained from the eigenvector corresponding to the eigenvalue 1 of S [53, 60].  

 
Figure 4. Prevalence of cooperation in finite populations. The main panel pictures the stationary 
distribution corresponding to the prevalence of each fraction of Cs that emerges from the discrete 
gradient of selection G shown in inset. Whenever risk is high, stochastic effects turn collective 
cooperation into a pervasive behavior, rendering cooperation viable and favoring the overcome of 
coordination barriers, irrespective of the initial configuration (Z=50, N=6, M=3, c=0.1, µ=0.005). 
 

 
 In Fig. 4 we show the stationary distributions for different values of risk, 

for a population of size Z=50 where N=2M=6. While the finite population 
gradient of selection G(k/Z) shown in the inset exhibits a behavior qualitatively 
similar to 

! 

˙ x  in Fig. 1, the stationary distributions show that the population 
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spends most of the time in configurations where Cs prevail, irrespectively of 
the initial condition. This is a direct consequence of stochastic effects, which 
allow the “tunneling” through the coordination barrier associated with xL, 
rendering such coordination barrier (xL) irrelevant and turning cooperation into 
the prevalent strategy. On the other hand, the existence of a stable fixed root of 
G is triggered in P with a maximum at this position, unlike what one observes 
with 

! 

"k .  
 

Figure 5.  Population size dependence for N=6=2M. a) Roots of the gradient of selection for 
different values of the cost-to-risk ratio and population sizes. b) Fixation probabilities for different 
values of the population size for a fixed cost-to-risk ratio (γ=0.1) as a function of the number of Cs 
(β=5.0). c) We introduce a small mutation (µ=0.005) to show the stationary distribution for the same 
game parameters in b) and different population sizes. As the population size increases, the system 
spends increasingly less time close to the monomorphic configurations. 
 

Yet, until now the effect of the population size on the game itself remains 
uncharted. In Fig. 5a, we plot the roots of G(k) as a function of the cost-to-risk 
ratio for different values of population size Z. For large Z the general picture 
described for infinite populations remains qualitatively valid. As before, two 
interior roots of G(k) characterize the evolutionary dynamics of the population. 
However, the position of the interior fixed points can be profoundly altered by 
the population size. The range of k/Z in which Cs are advantageous is also 
strongly reduced for small populations. Moreover, while 

€ 

x  (see section 2) 
remains almost unchanged as we move from infinite to finite populations, the 
critical 

! 

"  is drastically reduced for small populations that, in turn, reduces the 
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interval of cost-to-risk ratios for which a defection dominance dilemma is 
replaced by a combination of coordination and co-existence dilemmas. In other 
words, the smaller the population size the higher the perception of risk needed to 
achieve cooperation. The population size also plays an important role on the 
shape of the stationary distribution: In Fig. 5c we plot the stationary distribution 
for r=1 and c=0.1, for different population sizes. Whenever the population size 
increases, a higher number of errors is needed to escape the equilibrium between 
Cs and Ds, leading the system to spend a higher fraction of time on the internal 
stable root of G(k).  

 

 
Figure 6.  Group size dependence for M=3. a) Roots of the gradient of selection for different values 
of the cost-to-risk ratio and group sizes. b) Stationary distribution for different group sizes and 
c/r=0.15. Cooperation will be maximized in small groups, where the risk is high and goal 
achievement involves stringent requirements. 
 

Naturally, the assessment of the effects of the population size should be 
carried out in combination with the number of parties involved in collective-risk 
dilemmas, i.e., the group size. Whether game participants are world citizens, 
world regions or country leaders, it remains unclear at which scale global 
warming should be tackled [40, 61]. Indeed, besides perception of risk, group 
size may play a pivotal role when maximizing the likelihood of reaching overall 
cooperation. As shown by the stationary distributions in Fig. 6, cooperation is 
better dealt with within small groups, with the proviso that for higher M/N 
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values, coordination is harder to attain, as shown by the position of the roots 
of G (see inset of Fig. 6).  

5.   Conclusions 

Dealing with environmental sustainability cannot overlook the uncertainty 
associated with a collective investment. Here we propose a simple form to 
describe this problem and study its impact in behavioral evolution, obtaining an 
unambiguous agreement with recent experiments [9], together with several 
concrete predictions. We do so in the framework of non-cooperative N-person 
evolutionary game theory, an unusual mathematical tool within the framework 
of modeling of political decision-making. We propose a new N-person game 
where the risk of collective failure is explicitly introduced by means of a simple 
collective dilemma. Moreover, instead of resorting to complex and rational 
planning or rules, individuals revise their behavior by peer-influence, creating a 
complex dynamics akin to many evolutionary systems. This framework allowed 
us to address the impact of risk in several configurations, from large to small 
groups, from deterministic towards stochastic behavioral dynamics.  

Overall, we have shown how the emerging behavioral dynamics depends 
heavily on the perception of risk. The impact of risk is enhanced in the presence 
of small behavioral mutations and errors and whenever global coordination is 
attempted in a majority of small groups under stringent requirements to meet 
coactive goals. This result calls for a reassessment of policies towards the 
promotion of public endeavors: Instead of world summits, decentralized 
agreements between smaller groups (small N), possibly focused on region-
specific issues, where risk is high and goal achievement involves tough 
requirements (large relative M) [62], are prone to significantly raise the 
probability of success in coordinating to tame the planet’s climate. Our model 
provides a “bottom-up” approach to the problem, in which collective 
cooperation is easier to achieve in a distributed way, eventually involving 
regions, cities, NGOs and, ultimately, all citizens. Moreover, by promoting 
regional or sectorial agreements, we are opening the door to the diversity of 
economic and political structure of all parties, which, as showed before [32, 63] 
can be beneficial to cooperation.  

Naturally, we are aware of the many limitations of a bare model such as 
ours, in which the complexity of Human interactions has been overlooked. From 
higher levels of information, to non-binary investments, additional layers of 
realism can be introduced in the model. Moreover, from a mathematical 
perspective, several extensions and complex aspects common to human socio-
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economical systems could be further explored [64-67]. On the other hand, the 
simplicity of the dilemma introduced here, makes it generally applicable to other 
problems of collective cooperative action, which will emerge when the risks for 
the community are high, something that repeatedly happened throughout Human 
history [68, 69], from ancient group hunting to voluntary adoption of public 
health measures [70-72]. Similarly, other cooperation mechanisms [10, 13, 15, 
18, 22-26], known to encourage collective action, may further enlarge the 
window of opportunity for cooperation to thrive. The existence of collective 
risks is pervasive in nature, in particular in many dilemmas faced by Humans. 
Hence, we believe the impact of these results go well beyond decision-making 
towards global warming.  
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