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a b s t r a c t

Many actions take some time to have an impact – their effects only appear at some point in the future.

Such time lags turn out to be ubiquitous among living organisms. Here we study the impact of time lags

in the evolutionary dynamics of cooperative collective action. We consider a population in which

individuals interact via a N-Person Stag Hunt dilemma and must opt to cooperate or defect. In the

absence of any delay, the replicator dynamics reveals the existence of regimes in which two internal

fixed points appear simultaneously. We show that the presence of time delay in the fitness of

individuals leads to a delayed replicator equation exhibiting new evolutionary profiles, each profile

being separated by critical values of the delay that we determine explicitly. When we break the

symmetry in the time lags, we show that, generally, defectors take more advantage from delay than

cooperators. Finally, when we take into consideration, approximately, effects associated with the finite

population size, we find that counter-intuitive evolutionary outcomes may occur, resulting from the

interplay between delay and the basins of attraction in the neighborhood of the internal fixed-points,

and which may lead to full cooperation in conditions under which the outcome would be Full Defection

in infinite populations.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

More often than we would wish, the impact of our actions is
not immediate, and only manifests itself in the future. There are
many situations in which this happens and has a real impact on
our lives: When a researcher applies for a new position, the CV
that will be used to assess her/his merit by the time the
evaluation panel convenes is that associated with the time of
submission of the application. Economical investments made
today typically generate profit only in the future. Fernando Pessoa

or Luı́s de Cam~oes did not live to realize they would be coined the
most important Portuguese Poets. When lionesses group together
to hunt for prey, their capacity to feed the community depends on
food collected in the past. During winter, animals that hibernate
survive by using the energy accumulated during off-winter
activity. Politicians’ actions take time to produce an impact. The
true impact of our efforts to avoid climate change will only be felt
several years in the future.

Many other examples from real life that we all have experi-
enced or witnessed testify for the time lag that takes place
between whatever we do or achieve and the impact of this
achievement in our (and others) lives. Of course, the time lag
associated with different actions is usually different, in some
cases a few minutes, in others months, years or even centuries.
Nonetheless, such time lags are ubiquitous.

Although some scholars have introduced time lags in known
biological models and studied their impact (Freedman and Sree
Hari Rao, 1983; Gyori and Ladas, 1991; Kuang, 1993; MacDonald,
1978), it is surprising that in the framework of evolutionary game
theory such time lags have witnessed little research. In well-
mixed populations interacting via symmetric two-person games,
evolving according to the replicator equation, the role of time
delays has been studied in the most interesting case where a
mixed Evolutionarily Stable Strategy (ESS) dominates the scene in
the absence of time delays. The most popular case is the snowdrift

game (Sugden, 1986) (also known as the chicken or hawk-dove

game), and this has indeed been studied by Yi and Zuwang,
(1997) and also by (Alboszta and Miȩkisz, (2004). In a nutshell,
they conclude that the presence of time delays does not change
the ESS although it may render it unstable for large values of the
time lag.
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Here, we study the recent and interesting case of the N-person
Stag Hunt game (NSH) (Pacheco et al., 2009b; Santos et al., 2008),
where collective action takes place only whenever group partici-
pants of the public goods game coordinate to achieve cooperation.
In such a setting, two internal fixed-points may arise (for a given
range of the game parameters), one of which associated with a
mixed ESS. The presence of more than one internal fixed point
paves the way for time delays to induce non-trivial effects in the
evolutionary dynamics of an infinite population. When popula-
tions are finite, not only the remnants of the internal fixed points
still play a (population size dependent) role (the effect of which
will be discussed) but also, in some regimes to be discussed in
detail below, unexpected and counter-intuitive results are
obtained. All this applies to the case in which all groups and
their members experience the same time delays. Whenever the
time delay is strategy-specific we find that cooperators and
defectors, engaging in an NSH, are affected by time delays in
fundamentally different ways.

This paper is organized as follows: In Section 2 we set the
stage, revisiting the NSH game, and defining the problem in the
framework of the replicator equation. In Section 3 we discuss
the impact of time-lags in the evolutionary outcome of infinite
populations and explore the behavior of the model in the case of
finite populations. Finally, Section 4 contains the discussion of our
results, the main conclusions and prospects for future studies.

2. Model

Our model considers time-delays in the NSH model introduced
by Pacheco et al., (2009b); Souza et al., 2009). Suppose we have an
infinite well-mixed population from which we select, at random,
groups of N individuals. They are given a chance to contribute to
the public good of the group, at a cost c to themselves. People who
contribute are called cooperators and those that do not are called
defectors. After everyone is given a chance to cooperate or defect,
if the number of cooperators, k, in the group is not smaller than a
given threshold M (1rMoN), the accumulated contribution is
multiplied by an enhancement factor F and distributed among all
the individuals of the group. The payoff of a defector is therefore
PD(k)¼(kFc/N)y(k�M), whereas that of a cooperator is
PC(k)¼PD(k)�c. The presence of the threshold M is reflected in
the Heaviside function y (x), with y (xo0)¼0 and y (xZ0)¼1).

Let us denote by x and 1�x the fraction of cooperators and
defectors in the population, respectively. We can compute the
average fitness of each strategy using the binomial sampling of all
possible payoffs associated with all possible group compositions.
Thus, in a group of N individuals with k cooperators, the different
strategies obtain the following average fitnesses:

f DðxÞ ¼
XN�1

k ¼ 0

N�1

k

� �
xkð1�xÞN�1�kPDðkÞ ð1Þ

f CðxÞ ¼
XN�1

k ¼ 0

N�1

k

� �
xkð1�xÞN�1�kPCðkþ1Þ ð2Þ

The time evolution of the fraction of cooperators in the
population is described by the replicator equation:

_x ¼ xð1�xÞðf CðxÞ�f DðxÞÞ ð3Þ

For a large range of parameter values, Eq. (3) has four fixed-
points (see Fig. 1): Two of these correspond to the trivial
monomorphic states of the population (x¼0 and x¼1, squares),
while the two internal points, xL and xR (0oxLoxRo1), account
for the solutions of fC(x)� fD(x)¼0. The lower one (xL, the

coordination point) is unstable whereas the higher one (xR, the
coexistence point) is stable.

A quantity of interest for the present work is the distance
between the two internal fixed-points, d¼xR�xL. For convenience
we kept the position of xR constant at x¼0.75. This allows us to
vary d by simply changing the position of xL, as depicted in Fig. 1.
Each value of d corresponds to a triplet of game parameters: the
enhancement factor (F), the level of threshold (M) and the group
size (N). In order to obtain a smooth variation of d, we worked
with a modified definition of the fitnesses (Eqs. (1) and (2)) that
allows for M to assume non-integer values. This does not affect
the properties of the model. In the Appendix A we provide details
of this transformation as well as the values of the triplets (F, M, N)
associated with each value of d used below.

To implement time delay in the model we modified Eq. (3) to
make the change of frequency of cooperators at a time t depend
on the average fitness the players had at a time t - t, for some
time delay t (t40):

_x ¼ xðtÞð1�xðtÞÞ f Cðxðt�tÞÞ�f Dðxðt�tÞÞ
� �

ð4Þ

This equation corresponds to the standard (Alboszta and
Miȩkisz, 2004; Yi and Zuwang, 1997) (and simplest) case of
symmetric delay, in which every strategy has the same time delay
between change and fitness driving such change. Note that the
existence and location of the fixed-points is unchanged by t.
Below we show that the introduction of this time lag modifies the
stability of the coexistence point. In fact, there is a critical value of
t, tC, at which a Hopf bifurcation occurs, leading to a change from
a stable to an unstable behavior, accompanied by the emergence
of periodic solutions.

More general, less symmetric formulations of time delays can
be made. For instance, delays may be strategy dependent:

_x ¼ xðtÞð1�xðtÞÞ f Cðxðt�tCÞÞ�f Dðxðt�tDÞÞ
� �

ð5Þ

In this manuscript we consider the formulations of Eqs. (4)
and (5). Moreover, in the case of Eq. (5), we shall consider that
only one of the two possible delays tC, tD, is different from zero.
For these two cases, the Hopf bifurcation line of the coexistence
equilibrium can be found analytically (Kuang, 1993). Apart from
this technical advantage, the cases we will explore were chosen
because they illustrate the two opposite extremes concerning the
general behavior, namely the maximally symmetric (tC

�tD
¼0)

and the maximally asymmetric (tCtD
¼0) choice for the delays

associated with each strategy.
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Fig. 1. Replicator dynamics for a population playing a N-Person Stag Hunt game.

We study the evolutionary dynamics of the NSH for a range of parameters that

leads to the existence of two internal fixed-points in the replicator equation (xL

and xR). For simplicity, our choice of parameters (M, F and N) was such that the

position of xR remained constant at x¼0.75, whereas xL was shifted to obtain the

desired distance d between the internal fixed-points (d¼xR�xL).
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A problem that arises when dealing with delay differential
equations (DDE’s) is the choice of the so-called history function of
the system, i.e., the (infinite dimensional) initial condition that
defines how x evolved during the time interval [�t , 0]. This choice
does not influence the stability properties of the coexistence point.
However it can have a significant impact in the evolutionary
outcome of the population, as we demonstrate below.

In this manuscript we focus our study on the impact of time
delays in the evolutionary dynamics of a population that at time
t¼0 is composed by a fraction xR of cooperators. To that end, we
take as history function a perturbation such that the population
composition is set on xR both at t¼�t and t¼0 and it oscillates
with a small amplitude around this value from t¼�t to t¼0. The
choice of this history function corresponds to the idea that, before
the delay sets in, the population undergoes small fluctuations
around the stable coexistence equilibrium point. We will make
use of two variations of this history function to account for the
effect of increasing or decreasing the fraction of cooperators at
t¼�t, which we found to be relevant. Consequently, we shall
start the first oscillation with an increasing or decreasing beha-
vior from xR, respectively. The history function is described in full
detail in the Appendix B, where we also consider the standard
choice of a homogeneous history function. Overall, the nature of
the results does not depend on the specific choice made for the
history function.

Needless to say, other history functions are possible. However,
these often require additional parameters that directly influence
the evolution of the population and whose analysis presents, by
itself, an additional layer of complexity.

3. Results

3.1. Symmetric case: A common time delay

The stability of the coexistence point (xR) for the delayed
system, as described by Eq. (4), can be obtained from the analysis
of the linearized equation at xR,

_x ¼ axðt�tÞ ð6Þ

where a¼xn(1�xn)(f 0C(xn)� f 0D(xn)) and xn
¼xR is the frequency of

cooperators at the coexistence point. The characteristic equation
of (6) reads (Kuang, 1993)

l�ae�lt ¼ 0 ð7Þ

The roots of Eq. (7) are given by

l¼WðatÞ=t ð8Þ

where W is the Lambert function (Kuang, 1993). The Hopf
bifurcation at the coexistence point takes place when the real
part of the principal branch W(at) in Eq. (8) goes through zero
and reads tC¼�p/2a.

To go beyond linear stability analysis and to study the
behavior of the population for larger values of t one must resort
to numerical integration. In Fig. 2 we show three integrations of
Eq. (4) over time for three different delays (t¼0.5, 1.0 and 2.0)
and the same d¼0.15.

The integration of Eq. (4) gives rise to three distinct evolu-
tionary behaviors: For small delays the dynamics of the popula-
tion remains unchanged and the population is driven to a stable
coexistence – this is what we call Phase I. Above a critical delay,
tC, which corresponds to the Hopf bifurcation at the coexistence
point, we enter what we call Phase II, in which the stability of xR

changes and a stable periodic orbit appears. Thus the population
will be trapped on periodic oscillations around xR. As we
increase the delay, so does the amplitude of the periodic orbit.

For sufficiently large delays, the amplitude will be large enough to
bridge the distance d and reach xL. At this point the periodic orbit
disappears or becomes unstable, so that the population will be
driven to Full Defection, entering what we call Phase III. These
three behaviors are depicted in Fig. 2.

In both Phase I and II the evolutionary outcome is qualitatively
identical to the one expected before the introduction of delay, in
the sense that although the dynamics are different the population
is always composed of a mixed amount of both strategies.
However, in Phase III we observe a different evolutionary out-
come as the population is always driven to Full Defection.

More important than tC which, as discussed above, defines the
boundary between Phase I and Phase II and can be found
analytically, there must exist for each d an additional critical
delay, t’C, above which the population will asymptotically end up
in Full Defection. In other words, this t’C defines another bound-
ary, between Phases I and II, characterized by strategy coexis-
tence, and Phase III, characterized by Full Defection.

Fig. 3 shows the bifurcation diagram of Eq. (4) as a function of
the parameters t and d. The results were obtained by numerical
integration of Eq. (4) with a history function that corresponds to a
small perturbation around xR. Overall, the contour plot is the
result of over 12,000 integrations. The analytical prediction for tC

is shown to fit perfectly with the numerical integration illustrat-
ing the accuracy of the numerical phase diagram. In Fig. 3 we also
depict the behavior of t’C.

Finally, it is noteworthy that the persistence, as the delay t
increases, of the stable periodic orbit O, associated with Phase II,
depends strongly on the position of the internal fixed points xL and
xR, given here by the parameter d. This can be understood if we
think that O must live in the basin of attraction of xR, for t¼0, and
that its amplitude increases with t1 asymmetrically, reflecting the
existing asymmetry of _xðtÞ around xR (see Fig. 1), so that the
minimum of x(t) along O approaches xL faster than the maximum
approaches x ¼1. The breakdown of the stable oscillations asso-
ciated with O takes place when the troughs of x(t) along O cross xL.
For small values of d this happens for small amplitudes of O and
small values of t, which results in a relatively thin Phase II. For larger
values of d the area associated with Phase II increases significantly,
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Fig. 2. Examples of time integrations and associated behavior The game para-

meters are: M¼26.9831, F¼14.9419 and N¼40 which correspond to d¼0.15. Each

integration uses a different value for the time delay t (indicated) leading to

different behaviors. On the right hand side of the plot, we characterize the nature

of the fixed points of the corresponding evolutionary dynamics in the absence

of delay.

1 This is because the oscillations of O around xR reflect the delayed effect of

the change in sign of the derivative _xðtÞ as x crosses xR in the basin of attraction

bounded by xL to the left and by x¼1 to the right, see Fig. 1.
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becoming the dominant behavior whenever d41�xR. In other
words, when the distance between the fixed-points is greater than
that between the coexistence point and x¼1.

3.2. Asymmetric case: strategy-specific delays

Let us consider now the case of asymmetric delays, in which
case, as stated before, we set either tC or tD to zero in Eq. (5). The
linearized equation at xR has now the form

_x ¼ axðt�tÞþbx ð9Þ

where a¼�xn(1�xn)f 0D(xn) and b¼xn(1�xn)f 0C(xn) when tC
¼0,

and a¼xn(1�xn)f 0C(xn) and b¼�xn(1�xn)f 0D(xn) when tD
¼0. The

characteristic equation of (9) is (Kuang, 1993):

l�ae�lt�b¼ 0 ð10Þ

and the roots of (10) are given by

l¼ bþWðate�btÞ=t ð11Þ

When tD
¼0, a40, bo-a and l, given by (11), is real and negative

for every t. In other words, the coexistence point becomes less
stable as the delay t increases, but its stability type is left
unchanged by the introduction of arbitrarily large delays.

When tC
¼0, the effect of the delay is similar to the symmetric

case, although less pronounced. In Fig. 4 we plot the bifurcation
diagram of Eq. (5) as a function of d and tD

¼t. Similar to Fig. 3, in
Fig. 4 we identify the same three Phases. The evolutionary out-
come of cooperation under this new scheme of delays is char-
acterized by a near absence of Phase II and by the relatively low
(when compared with the symmetric delay scheme) critical
delays above which the population ends in Full Defection. The
range of parameters for which cooperation is sustainable is
significantly reduced in this case. Clearly, defectors benefit more
from delays than cooperators.

3.3. Finite population-size effects

So far we have not taken into consideration that the possibility
of an orbit getting arbitrarily close to x¼1 (the fully cooperative
scenario) is an artifact of the infinite population ansatz we are
employing. In real situations, populations are finite and the
population is bound to spend a finite amount of time in the
vicinity of x¼1.

To account for population finite-size effects, we define a cut-
off value of xcutoff¼1� 10�3 taking x to be effectively one
whenever it goes above this value during the numerical integra-
tions (this implicitly assumes a population of 1000 individuals;
note further that, in an actual finite system, expressions (1) and
(2) for the calculation of the average fitness should, in full rigor,
be replaced by sampling without replacement) (Miȩkisz and
Weso"owski, 2011).

We consider Eq. (4) in this approximate scheme using varia-
tions of the history function which take into account whether x

starts, at t¼�t, by increasing (left panel of Fig. 5) or decreasing
(right panel of Fig. 5).

Two distinct types of behavior can lead a population to go over
the cutoff. The first is when the parameters (d and t) create an
orbit O whose amplitude takes x over xcutoff. This behavior is
independent of the history function and we call this type of
‘‘fixation’’ Type I. A second behavior – Type II – depends on the
initial conditions. It occurs for parameter values for which the
stable orbit O is below xcutoff and it is associated with orbits that
may reach the cutoff in the transient before they are attracted to
O, typically in the first or second swings of x(t). The transient is
strongly dependent on the history function, and so is the region
associated with this behavior. Examples and further discussion
are deferred to Appendix C.

In Fig. 5 we show the region of parameters that give rise to
both Types of fixation. Note that the Type II fixation is sensitive to
the history function variation that we use, and thus constitutes a
less robust type of fixation. The overall picture can be understood
in terms of the relation between the stable periodic orbit O and
the basin of attraction of xR, as discussed above for the infinite
population limit. Type I fixation is independent of the initial
conditions but it is confined to Phase II and mostly restricted to
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the region d40.25, which is in accordance with the previous
discussion in Section 3.1. Type II fixation can occur both in Phase
II and in Phase III, and while in Section 3.1 we presented Phase III
as a situation in which the population is always led to Full
Defection, for finite populations we observe a coordination
dynamics where the population, depending on the initial fraction
of cooperators (in relation to xL), either fixates in Full Cooperation
or in Full Defection.

Therefore, and counter-intuitively, specific conditions, which
may depend on the history function, may drive a finite population
into a Full Cooperation scenario both in Phase II and in Phase III.
The chances that the population fixates in full cooperation
increase for increasing d and increasing delays. For asymmetric
delay, fixation is characterized by the absence of Type I fixation
and, consequently, by a more explicit dependence on the initial
conditions (see Appendix D).

4. Discussion

In this work we have introduced both symmetric and asym-
metric delays into NSH evolutionary games. Three distinct evolu-
tionary outcomes were identified, as depicted in Fig. 2, which
depend on the magnitude of delay t and on the distance d
between the internal fixed-points of the NSH. A critical delay,
corresponding to the value at which we find a Hopf bifurcation at
the coexistence point, can be computed analytically. Above this
delay the population dynamics is dominated by oscillations
around the coexistence point. Numerical exploration of the
system led us to identify yet another critical delay, above which
the population ends in Full Defection. In Fig. 3 and Fig. 4 we plot
the bifurcation diagrams of the population dynamics with sym-
metric and asymmetric delays, respectively.

Recently, we have shown that the simultaneous appearance of
2 internal fixed points in the evolutionary dynamics of popula-
tions is ubiquitous in Biological and Social Sciences (Pacheco
et al., 2009c; Santos and Pacheco, 2011; Souza et al., 2009).
Furthermore, this feature arises not only as a result of individuals
engaging in threshold public goods games, but also when indivi-
duals engage in two-person games along the links of complex
networks which, together with the game at stake, ultimately
dictate the detailed interplay and location of the internal fixed

points. In this sense, our results for infinite populations and
symmetric or asymmetric delays suggest that delays not only
de-stabilize the stable equilibrium but also, overall, favor defec-
tion. Once again, and remarkably, such a ubiquitous feature of any
biological systems – time delay – seems to reinforce the grim
message from standard Evolutionary Game Theory – defection is
evolutionary advantageous.

In Section 3.3, however, we inspected finite population-size
effects for symmetric delay. In this case, which is more realistic
from a biological perspective, we showed how the dynamics is
enriched as a result of finite population-size effects. The results
(Fig. 5) show that the evolutionary outcome of the population is
strongly dependent on its past. In particular, appropriate choices
of history functions may, in principle, drive the population into all
possible outcomes, giving delay and non-markovian effects a
central role to play in the evolutionary dynamics of populations.

From a wider perspective, delayed fitnesses provide the
population with the ability to leave the basin of attraction of
the mixed ESS, in favor of others (e.g. Phase III). Indeed, in Phase
II, coexistence is characterized by stable periodic oscillations
around a mixed ESS. For a large range of the parameters
considered, characterized mostly by low enhancements and high
threshold levels, small delays are enough to switch from coex-
istence of strategies to irreversible demise of cooperators (small
Phase I and II); as enhancements are increased and thresholds
decreased, the distance between the internal fixed points
becomes larger, creating a more favorable setting for cooperation,
which now becomes protected from increasing delays, (large
Phase II). In particular, for finite populations this widening of
Phase II is accompanied by a chance for cooperators to invade the
entire population (Type I and II behavior). From an evolutionary
perspective, it is reasonable to assume that, long time ago,
populations were small, the same happening with thresholds,
while the returns from successful coordination were potentially
very high. In others words, it is conceivable that early in evolution
conditions were ripe for cooperation to thrive. As populations
grew as well as their organizational complexity, it is possible that
the evolutionary dynamics has enabled populations to maintain
cooperation as a viable evolutionary outcome.

This work investigated the simplest scenarios that arise as a
result of introducing delays in the population dynamics of
collective action. In this sense, they should be considered as a
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first step toward further studies on the impact of delay in the
evolutionary dynamics of collective action. Steps ahead include
investigating explicitly the role of delay in finite populations, in a
manner similar to, e.g., (Miȩkisz and Weso"owski, 2011), as well
as in structured populations (Nowak and May, 1992; Santos et al.,
2006; Szabo and Fath, 2007), given their importance in relating
evolutionary game theory models and real population dynamics.
Furthermore, given that recent studies positively correlate social
diversity (McNamara et al., 2004; Pacheco et al., 2009a; Perc and
Szolnoki, 2008; Santos and Pacheco, 2005; Santos et al., 2008;
Santos et al., 2011; Van Segbroeck et al., 2009) with the sustain-
ability of cooperation, it is only natural to investigate the role of
diversity of delays into the evolutionary dynamics of collective
action. Work along these lines is in progress.
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Appendix A. Game parameters and fitness functions

From (Pacheco et al., 2009b) we know that any internal fixed-
point of the replicator equation of the NSH with threshold satisfy:

f cðxÞ�f dðxÞ ¼�c 1�
F

N
RðxÞ

� �
ðA:12Þ

Assuming that we have a pair of fixed-points, xL and xR, for a
set of game parameters (M, F and N) then the following applies:

RðxLÞ ¼ RðxRÞ ¼N=F ðA:13Þ

As discussed in the manuscript, the relevant parameter of
interest for this work is the distance (d) between xR and xL. To be
able to treat d as a continuous parameter we re-define the
polynomial R(x) as:

RðxÞ ¼ IkðM,N�MÞþM
GðNÞ

GðMÞGðN�Mþ1Þ
xM�1ð1�xÞN�M

ðA:14Þ

where G is the gamma function, the generalization of the factorial
to real numbers, and Ik is the regularized beta function

Ikða,bÞ ¼
Bðx; a,bÞ

Bða,bÞ
ðA:15Þ

with B(x;a,b) the incomplete beta function:

Bðx; a,bÞ ¼

Z x

0
ta�1 1�tð Þ

b�1dt ðA:16Þ

and B(a,b) the beta function (Eq. (A.5) with x¼1). Whenever a and
b are integers Ik simplifies to

Ikða,bÞ ¼
Xaþbþ1

j ¼ a

ðaþb�1Þ!

j!ðaþb�1�jÞ!
xjð1�xÞaþb�1�j

ðA:17Þ

in which case Eq. (A.3) reduces to the R(x) of (Pacheco et al.,
2009b). Hence, using Ik we can nicely expand our studies to real F

and M: for given N, xL and xR, we can compute, from the first
equality of (A.2) and through numerical methods, a value of M;
then, from the last equality of (A.2), we determine the corre-
sponding F.

The parameters were computed taking xR fixed at 0.75 and
N¼40. In Table A1 we provide all the game parameters (M, F

and N) used for each value of d.

Appendix B. History function

The history function we used corresponds to a small amplitude
oscillation around the coexistence point, xR, in the time interval
[�t , 0]. It is defined in such a way that, at the extremes of the

Table A.1
Game parameters leading to a constant xR. The integrations on Sections 3 and 4 of

the main work were carried out using the combination of parameters tabulated.

The columns are, from left to right: the value of d;N stands for the group size; M

defines the threshold parameter; F corresponds to the enhancement factor of the

game; xL gives the position of the coordination point; d the distance between the

coexistence point (xR) and the coordination (xL) point: d¼xR�xL.

d xL N M F

0.020 0.730 40 29.60152029 8.593394007

0.025 0.725 40 29.50227975 8.685166955

0.030 0.720 40 29.40313568 8.786696175

0.035 0.715 40 29.30406265 8.898130145

0.040 0.710 40 29.20505209 9.019625394

0.045 0.705 40 29.10606634 9.15140071

0.050 0.700 40 29.00708018 9.293689767

0.055 0.695 40 28.90807249 9.446747352

0.060 0.690 40 28.80902236 9.610853205

0.065 0.685 40 28.7098938 9.786339079

0.070 0.680 40 28.61066669 9.973536598

0.075 0.675 40 28.511308 10.17282663

0.080 0.670 40 28.41179125 10.38460364

0.085 0.665 40 28.31208407 10.60929947

0.090 0.660 40 28.21217183 10.84732791

0.095 0.655 40 28.1120014 11.09921679

0.100 0.650 40 28.01154721 11.36545224

0.105 0.645 40 27.91078711 11.64652698

0.110 0.640 40 27.80966702 11.94304116

0.115 0.635 40 27.70816147 12.25553137

0.120 0.630 40 27.60622489 12.58460691

0.125 0.625 40 27.50381772 12.93086999

0.130 0.620 40 27.40090164 13.294923

0.135 0.615 40 27.29742468 13.67741745

0.140 0.610 40 27.19333165 14.07901637

0.145 0.605 40 27.08859316 14.50026921

0.150 0.600 40 26.9831347 14.94188315

0.155 0.595 40 26.87690583 15.40444187

0.160 0.590 40 26.76984107 15.88855186

0.165 0.585 40 26.66187464 16.3947692

0.170 0.580 40 26.55294692 16.92354993

0.175 0.575 40 26.44297009 17.47540001

0.180 0.570 40 26.33186743 18.05066874

0.185 0.565 40 26.21956061 18.64958285

0.190 0.560 40 26.10595213 19.27231697

0.195 0.555 40 25.99094618 19.91885754

0.200 0.550 40 25.87443483 20.58904754

0.205 0.545 40 25.75631426 21.28246086

0.210 0.540 40 25.63646391 21.99848693

0.215 0.535 40 25.51475299 22.736259

0.220 0.530 40 25.39105158 23.49454805

0.225 0.525 40 25.26521139 24.2718418

0.230 0.520 40 25.13708745 25.06617547

0.235 0.515 40 25.00652161 25.87520128

0.240 0.510 40 24.87334085 26.69617327

0.245 0.505 40 24.73737953 27.52579436

0.250 0.500 40 24.59846488 28.36030653

0.255 0.495 40 24.45639843 29.19561576

0.260 0.490 40 24.31101104 30.0270045

0.265 0.485 40 24.16211792 30.84946873

0.270 0.480 40 24.00954664 31.65765429

0.275 0.475 40 23.85312517 32.44605509

0.280 0.470 40 23.69271507 33.20901103

0.285 0.465 40 23.52818201 33.94105575

0.290 0.460 40 23.35942702 34.63698227

0.295 0.455 40 23.18638398 35.29209041

0.300 0.450 40 23.00902981 35.9023713

0.305 0.445 40 22.82737268 36.4647426

0.310 0.440 40 22.64147598 36.97711481

0.315 0.435 40 22.45145785 37.43849596

0.320 0.430 40 22.25745936 37.84908298

0.325 0.425 40 22.05967719 38.21011615

0.330 0.420 40 21.85833222 38.52382096

0.335 0.415 40 21.65368716 38.79319634

0.340 0.410 40 21.44598597 39.02188181

0.345 0.405 40 21.23552339 39.21384367

0.350 0.400 40 21.02255328 39.37326291
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interval (t¼�t and t¼0), the population is composed of a
fraction xR of cooperators. Thus the history function is:

AsinðBt=tÞþxR ðB:1Þ

where A defines the amplitude, 9B9 the frequency and the sign of B

the initial phase of the oscillation.
The impact of these two parameters in the evolutionary

dynamics is different but it is relevant only for the finite popula-
tion model discussed in Section 3.3 because the stability proper-
ties of the fixed points are independent of the history function
(Kuang, 1993).

In Figs. 3, 4 and 5 we used A¼10�10 and B¼1. In Fig. B.1 we
fixed d to illustrate the influence of the parameters A and B on the
behavior of the system.

In Section 3.3, where finite populations are discussed, the
impact of the sign of B was taken into account by considering
B¼1 and B¼�1, meaning that the first oscillation starts increas-
ing or decreasing from xR, respectively.

For the sake of completeness, we have also considered the
homogeneous history functions x(t)¼xR, in the time interval [�t ,
0), and x(t)¼A or x(t)¼�A. For infinite population size, the
results remain unchanged. We obtain again the numerical phase
diagrams of Figs. 3 and 4, consistent with the attractors associated
with each phase being global attractors for the system. The results
for finite population size are slightly changed in what concerns

Type II fixation. This is to be expected since Type II fixation
depends on the initial condition through the corresponding
transient. For the homogeneous history functions with and
x(t)¼A and x(t)¼�A we obtain a behavior similar to that
depicted in the right and left panels of Fig. 5, respectively. The
only difference is that the parameter region of Type II fixation
becomes slightly smaller, and the region of global defection
slightly larger, for the case of homogeneous history functions.

Appendix C. Fixation Types (symmetric delay)

In Section 3.2 we classified two types of behaviors that lead
the population to fixation by ‘artificially’ setting x¼1 when x goes
above the imposed cut-off of xcutoff¼1�10�3. This is the simplest
way to simulate a finite population within our approach.

In Fig. C.1 we show two trajectories for the same d and history
function (A¼10�10 and B¼1) but for two different values of
delay. In the trajectory of Type I (left panel), the system repeat-
edly goes above xcutoff, because it does so as it follows the periodic
orbit O. By contrast, in the trajectory of Type II (right panel) this
only happens in the transient stage which precedes the conver-
gence to O that we call Stage I. In the particular case illustrated in
Fig. C.1, the system goes above the cut-off only once during Stage
I after which it oscillates around xR following O (Stage II) without
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ever again reaching this upper bound. However, for different
parameters, the population could go over the cut-off in Stage I and
afterwards end in Full Defection.

In Fig. C.2 we show how under the same conditions (t and d),
but for a slight modification of the history function (B¼�1
instead of B¼1), the Stage I is different from that of Fig. C.1,
and in particular no Type II fixation occurs. For any pair of values
of t and d, Type II fixation, because it depends on the transient
Stage I, may take place or not depending on the history function.
In contrast, Type I fixation is not sensitive to the history function

because it depends only on the form of the orbit O, which is
completely determined by the parameters t and d.

Appendix D. Fixation Types (asymmetric delays)

In this section we present the results of the finite population
approach to the asymmetric delay scheme, in complement to
those of Section 3.3 of the main text. The notation and definitions
are the same of Section 3. The following Fig. D.1 should be
compared with Fig. 4 for the infinite population limit, noting that
the scale in the t–axis has been changed to display the region of
interest.

Interestingly, the asymmetric delay scheme has no Type I
fixation in this parameter region and its fixation behavior is
always dependent on the initial conditions. However, we found
that Type II fixation is independent of the choice of any of the two
history functions that were used.
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