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Abstract. Social networks affect in such a fundamental way the
dynamics of the population they support that the global, population-
wide behavior that one observes often bears no relation to the agent
processes it stems from. Up to now, linking the global networked
dynamics to such agent mechanisms has remained elusive. Here we define
an observable dynamic and use it to track the self-organization of cooper-
ators when co-evolving with defectors in networked populations interact-
ing via a Prisoner’s Dilemma. Computations on homogeneous networks
evolve towards the coexistence between cooperator and defector agents,
while computations in heterogeneous networks lead to the coordination
between them. We show how the global dynamics co-evolves with the
motifs of cooperator agents in the population, the overall emergence of
cooperation depending sensitively on this co-evolution.

Keywords: Complex Networks, Self-Organization, Cooperation,
Evolutionary Game Theory, Evolutionary Dynamics.

1 Introduction

Dynamical processes involving populations of agents constitute paradigmatic
examples of complex systems. From epidemic outbreaks to opinion formation,
evolutionary and learning behavioral dynamics, the impact of the underlying
web of ties in the overall behavior of the population is well known [I1 61012,
13,151 211, 22| 26 30} 41, 42]. Furthermore, it is often impossible to avoid such
structures when applications require the deployment of agents under physical or
other constraints as it is with network routing [I8/29], computational intelligence
techniques [7,8,[43] and sensor networks [2].

In this context, Evolutionary Games [35] provides one of the most sophisti-
cated examples of complex system dynamics in which the role of the underlying
network topology proves ubiquitous. For instance, when cooperation is modeled
as a Prisoner’s dilemma game (PD), cooperation may emerge (or not) depending
on how agents are networked [14116]23-25,27,[31,[32,37,38]. Up to now, multi-
agent based models were unable to identify the detailed mechanism by which
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local self-regarding actions lead to a collective cooperative scenario, in particu-
lar relating it to the network topology. In the following, we devise a means to
establish such a link between individual and collective behaviors, in terms of
the underlying network topology. To this end we make use of evolutionary game
dynamics, although the method should be easily applicable to other dynamical
processes taking place on general complex networks.

2 Results and Discussion
2.1 Evolution of Cooperation in Finite Well-Mixed Populations

Let us consider two agents who can each adopt one of two possible behaviors:
Cooperator (C) or Defector (D). Whenever they interact, four outcomes are
possible: Two Cs receive R (reward) each, whereas each receives P (punishment)
if both are Ds. Whenever a C interacts with a D, the C' gets S (the sucker’s
payoff) whereas the D gets T (temptation to defect). These outcomes can be
summarized through the so-called payoff matrix,

C D
C (R S
D (T P> (1)
Whenever T > R > P > S one obtains the PD [4[35]. For simplicity, we
formalize the PD game in terms of a single parameter B (benefit) by defining
T=B>1,R=1,S=1-—Band P=0.

In the context of Evolutionary Game Theory [35], the payoff of an agent is
associated with her/his fitness that is her/his social success. Thus, behaviors
that provide higher rewards are imitated more frequently and spread in the
population. Here, evolution and strategy update is modelled via a stochastic
birth-death process in finite populations of size N, often referred as pairwise
comparison rule [35,[39]. At each iteration, a randomly selected agent x adopts
the strategy of a randomly selected neighbor y with probability given by the
Fermi distribution

p=[1+e Pt L, (2)
where the fitness values f, (f,) stand for the accumulated payoff of = (y) and 3
controls the intensity of selection measuring the importance of the agent payoffs
and stochastic effects in the imitation process [39].

In the limit of well-mixed populations of size N — where agents may interact
with any other agent in the population —, C's are always worse off than Ds, and

will be outcompeted under natural selection [35]. Mathematically, this means
that the gradient of selection [28][34,[39]

G(j)=T"() =T () 3)

is negative for all j, where j stands for the number of Cs in the population and
. N—-j3j 1

T(j) = (4)

N N1+ etB(fo—fo)
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represent the probabilities to increase/decrease the number of Cs in the popu-
lation [40].

The elegance of this result (despite the doomsday scenario for Cs) is best
appreciated when realizing that the population ends up adopting the Nash-
equilibrium of a PD game interaction between two agents: everybody defects.
Consequently, there is no difference in the outcome of the game, from an agent
or from a (collective) population wide perspective. This result holds in struc-
tureless populations, a feature which is seldom observed in practice, with strong
implications in many natural phenomena.

It is noteworthy that the general methodology discussed in the next section is
independent from the stochastic update rule adopted in the evolutionary process.
Moreover, this stochastic update is more general one could initially foresee, as
the ensuing dynamics may be also shown to be equivalent to the replicator
equation [I7)[40] and to finite action learning automata in the limit of infinite,
well-mixed populations [9,36,41].

2.2 Gradients of Selection in Structured Populations

A homogeneous network, in which all agents engage in the same number of
games (k) with their first neighbors, represents the simplest case of a structured
population, where agents occupy the nodes of the network, whose links determine
who is neighbor of whom. Unlike well-mixed populations, even in such simple
homogeneous scenario where all agents share the same number of neighbors,
agents with the same strategy no longer necessarily share the same fitness (here
associated with game payoff): fitness becomes context-dependent and so does
the gradient of selection, which is now impossible to compute analytically.

To overcome this problem, we define the Average Gradient of Selection (A GoS),
denoting it by G4 (j) as the average i) over all possible transitions taking place in
every node of the network throughout evolution, and i7) over a large number of
networked evolutions. For each agent ¢ we compute the probability of changing
behavior at time t,

1 o
T, = = [1 _i_e*ﬁ(fm*fi)]*l? (5)
* 1

m=

where k; stands for the degree of node 7 and 7; for the number of neighbors
of i having a strategy different from that of i. The AGoS at a given time ¢ of
simulation p, where we have j Cs, is defined as,

Gp(ist) =T4 — Ty (6)

AllDs
where, Ty = & Y41 T;(¢).
For a given network type, we run {2 = 2 x 107 simulations (using 10% ran-
domly generated networks) starting from all possible initial fractions j/N of Cs.
Each configuration of the population is associated with the fraction j/N of Cs.

Evolutions run for A = 10° time steps. Hence, the overall, time-independent
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Fig. 1. Time-independent AGoS. (a) We plot G*(j) for a population of players
interacting via a PD in a homogeneous random network, for two values of the benefit B.
Globally, G4 (j) indicates that the population evolves towards a co-existence scenario.
(b) Stationary distributions showing the pervasiveness of each fraction j/N in time.
In line with the AGoS in a), the population spends most of the time in the vicinity of
the stable-like root zr of G*(j). When j/N = 0, Cs become disadvantageous, giving
rise to an unstable-like root zz, of G4 (j) which, however, plays a minor role as shown
(N = 10°, k = 4 and 8 = 1.0). Homogeneous random networks were obtained by
repeatedly swapping the ends of pairs of randomly chosen links of a regular lattice [33].

AGoS is given by the average

» | AL ’
GA) =55 2D Colit) (7)

over all simulations and time-steps.

The gradient of selection in networks has to be computed numerically and
has the nice property of being network dependent but context independent, as
it recovers a population most likely direction of selection. As demonstrated be-
low, AGoS allow us to follow in time the evolutionary dynamics from a global,
population-wide perspective, as opposed to an agent perspective, which can al-
ways be inferred from the structure of the payoff matrix.
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Fig. 2. Evolutionary dynamics cooperation in homogeneous networks. We
plot the interior roots zr of G*(j) (circles and squares) for a PD (T = B, R = 1,
P =0, S = 1— B) in homogeneous networks, from random networks (circles) to
ordered lattices (squares), as a function of the benefit B. G*(j) indicates that the
population evolves towards a stationary fraction zr of Cs. This is confirmed by the
stationary states (lines) obtained via computer simulations starting from 50% of C's
and Ds randomly placed in each network. (N = 10°, k =4 and 8 = 0.1).

2.3 Results for Homogeneous Networks

The results for G(j) on homogeneous random networks are shown in Fig. [Th.
Unlike well-mixed populations, where cooperation has no chance and G4(j) < 0
for all values of j, homogeneous networks can sustain cooperation [241[33][37].
The shape of G4(j) suggests that, even though every agent engages in a PD,
from a global, population-wide perspective, homogeneous networks give rise to
an emerging collective dynamics promoting the co-existence between Cs and Ds
defined by a co-existence point at j/N = xg.

This hypothesis is confirmed when one computes the stationary distribution,
which measures the fraction of time that the population spends in each available
state j/N before reaching fixation (Fig. [Ib). It represents the pervasiveness in
time of each composition of the population [19], here identified by the fraction of
Cs. The remarkable agreement between the roots of G4 (j) and the peaks of the
stationary distribution gives credit to G*(j) while emphasizing the fundamen-
tal transformation in the evolutionary dynamics of the population introduced
by a complex network of interactions. As we show below, the emergence of an
unanticipated global (macroscopic) dynamics from a distinct agent (microscopic)
dynamics pervades throughout evolutionary dynamical processes in structured
populations.
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The co-existence point is associated with the internal root of G4(j), 2, inex-
istent in well-mixed populations, and whose location decreases with increasing
B. Together with xr one obtains a coordination root (xz ~ 0) of GA(j) since,
in the absence of cooperative partners, Cs will always be disadvantageous. How-
ever, the impact of xy is minor, as shown in Fig. [[b. In Fig. Bl we track the
position of zr (dots) for two different homogeneous structures along a range
of the B values. These are compared with the equilibrium fraction of coopera-
tors (lines), in other words the stationary states. As expected we find a match
between the AGoS prediction and the dynamical outcome, thus providing ev-
idence that the AGoS remains valid and quantitatively accurate for a broad
range of game parameters and different types of homogeneous networks.

Fig. [h shows that, as we move from a single agent to a population wide
perspective, one witnesses the emergence of a new evolutionary dynamics. This
new global dynamics has important practical consequences: The fixation time —
the time required for C's to invade the entire population — becomes much larger in
homogeneous networks when compared to well-mixed populations (irrespective
of the small-world effects associated with random links) as the population spends
a large period of time in the vicinity of zr, mainly when selection is strong
(large 3).

The analysis in Fig[ll was limited to the time-independent G4(j) as we av-
eraged over the entire time span of all runs. However, the A GoS itself evolves
in time, giving origin to a time-dependent G4 (j,t). At the beginning of each
simulated evolution, C's and Ds are randomly spread in the network, precluding
the occurrence of correlated (assorted) clusters of agentswith the same strategy.
Hence, GA(j,t = 0) < 0 in general. As populations evolve, Cs (Ds) breed Cs
(Ds) in their neighborhood, promoting the assortment of strategies, with impli-
cations both on the fitness of each player and on the shape (and sign) of G4 (4, 1).
The time-dependent gradients G (j,¢) for a particular generation to (and cor-
responding roots) are trivially computed by averaging over the configurations
occurring during N previous time-steps (1 generation),

to 2
G =gx O DGl (®)

t=to—N p=1

In Fig. Bk we plot snapshots of GA(j,t) for three different times, whereas Fig.
Bb portrays the time evolution of the internal roots (x; and xg) of GA(j,1),
on which we superimposed two evolutionary runs starting with strategies ran-
domly placed in the population. As GA(j,t = 0) < 0, the fraction of Cs will
start decreasing (Fig. Bh). However, with time, strategy assortment leads to the
emergence of a co-existence root of G4(j,t), towards which the fraction of Cs
converges. The ensuing coexistence between C's and Ds, which matches perfectly
the shape of G4 (j,t), stems from the evolving self-organization of C's and Ds in
the network, defining a global dynamics which is impossible to predict from the
nature of the local (PD) interactions.



92 F.L. Pinheiro, F.C. Santos, and J.M. Pacheco

® stable O unstable

1.0 a 5th generation

== == 15th generation

0.5
0.0
-0.5
-1.0

— 25th generation

G (109)

-1.5
-2.0

0.0 0.2 0.4 0.6 0.8 1.0
fraction of cooperators (j/N)

0.8

0.6 L

04 *

0.2

fraction of cooperators

0.0 b X
0 10 20 30 40 50
time (generations)

Fig.3. Time-dependent AGoS. (a) We plot GA(j7 t) for three different moments
of evolutionary time. Each line provides a snapshot for a given moment, portraying the
emergence of a population-wide (time-dependent) co-existence-like dilemma stemming
from an agent (time-independent) defection dominant dilemma (PD). (b) The circles
show the position of the different interior roots of G*(j,t), whereas the solid (dark grey
points) line and (light grey crosses) crosses show two independent evolutionary runs
starting from 50% of Cs and Ds randomly placed in the networked population. Open
(full) circles stand for unstable, z, (stable, zr) roots of G*(j,t) (B = 1.01, N = 10,
k =4 and g = 10.0).

2.4 Results for Heterogeneous Networks

It is now generally accepted that homogeneous networks provide a simplified
picture of real interaction networks [3L5L6LITHI3]. Most social structures share a
marked heterogeneity, where a few nodes exhibit a large number of connections,
whereas most nodes comprise just a few. The fingerprint of this heterogeneity is
provided by the associated network degree distributions, which exhibit a broad-
scale shape, often resembling a power-law [3|[BL6,12]. In the following we use
G4 (j,t) to show how population heterogeneity shifts the internal roots in Fig. [l
to the right, effectively transforming a co-existence scenario into a coordination
one. To this end, we compute G*(j,t) employing scale-free (SF) networks of
Barabési and Albert (BA) [5], which provide a widely used representation of a
heterogeneous structured population [12]. Fig. @h shows G4 (j) for BA networks,
whereas the circles in Fig. @b portray the time evolution of the internal roots of
GA(j,1).
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Fig. 4. AGoS on BA networks. (a) Starting from a defection dominance PD played
at an agent level, a coordination dynamics emerges at a global, population-wide scale,
for the three values of B depicted. (b) Evolution of the unstable root xr of G*(j,t)
(open circles), exhibiting the time-dependence of the global dynamics; solid (dark grey
dots) line and (light grey crosses) crosses show two independent evolutionary runs
starting from 50% of Cs and Ds randomly placed. The ultimate fate of C's in each run
depends on whether the population composition crosses over the time-dependent value
xz, of GA(4,t), thereby overcoming the dynamical coordination barrier during evolution.
(B=125 N=10% < k >=4 and 8 = 0.1). BA networks were obtained combining
growth and preferential attachment, following the model proposed by Barab&si and
Albert [5].

Clearly, heterogeneous networks lead to a global dynamics dominated by a
coordination threshold xy. This unstable root of G(j,t) represents the crit-
ical fraction of Ds above which they are able to assort effectively. Once this
happens, they successfully invade highly connected nodes (hubs), rendering co-
operation an advantageous strategy, as C's acquire then a higher probability of
being imitated than Ds. The requirement that C's must first invade hubs before
outcompeting Ds (by formation of cooperative star-like clusters [27]), makes in-
vasion harder for isolated Cs. Consequently, the unstable root x;, (located close
to j/N = 0 in homogeneous networks) moves here to higher fractions of C's. Once
this coordination is overcome, Cs benefit from the strong influence of hubs to
rapidly spread in the population, eventually leading to fixation. Hence, the stable
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internal root 2z which characterizes G (j) in homogeneous networks collapses
into values close to 7 = N on SF networks, leading to full cooperation. Naturally,
the location of xy, is an increasing function of B, as shown in Fig. [dh.

The requirement that Cs occupy the hubs to outcompete Ds also leads to
an intricate interplay between the time-dependent decline of z (see Fig. [db)
and the pervasiveness of Cs in the population. In Fig. @b we show, with full
lines, two evolutions in BA networks (for the same conditions): One ends up
in full cooperation whereas the other reaches full defection. In the former, the
fraction of Cs decreases in time slower than xy. Hence, a crossover moment is
reached, after which j/N > zp. As a result, the population will subsequently
reach full cooperation. In the latter, j/N remains always below z; and the
population evolves towards full defection. Clearly, heterogeneous networks lead
to the emergence of a global dynamics with time-dependent coordination barriers
and basins of attraction, all of which can be characterized using G4(j,t) .

3 Conclusions

Overall, our study shows that behavioral dynamics in social networks can be
understood as if the network structure is absent but agents faced a different
dilemma: The structural organization of a population of self-regarding agents
circumvent the Nash-equilibrium of a cooperation dilemma by creating a new
dynamical system globally described by two internal fixed points, x; (unsta-
ble) and x i (stable). Moreover, such a dynamical system, resulting from agents
interacting via a two-person game, cannot be mapped onto a two-person evo-
lutionary game in a well-mixed population. On the contrary, such dynamics
resembles that from, e.g., N-person dilemmas [20] in the presence of coordina-
tion thresholds [28/[34]. Hence, the global dynamics of a 2-person dilemma in
structured populations resembles a time-dependent N-person dilemma, in which
the coordination or co-existence features emerge from the population structure
itself. In this sense, different network topologies emphasize differently this co-
existence/coordination dichotomy. In such a context, the AGoS proves instru-
mental in characterizing the emergence of a new population-wide evolutionary
dynamics.

In sum it is of our belief that these results, together with the methodology
proposed here are of broad interest for areas within the biological and social
sciences that extend far beyond the scope of cooperation problems [6,TTHI3].
Moreover, we address a core problem common to most complex systems anal-
ysis on fields such as biology, social and engineering sciences: describe the link
between local and global dynamics in multi-agent systems. From human behav-
iors, epidemics, collective intelligence or many population-based applications,
most can be described as an interaction scheme embedded in a complex network
for which a tool such as the AGoS may help us to anticipate the emergent,
population-wide, global dynamics.
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