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Abstract In the natural world, performing a given task which is beneficial to an
entire group requires the cooperation of several individuals of that group who of-
ten share the workload required to perform the task. The mathematical framework
to study the dynamics of collective action is game theory. Here we study the evo-
lutionary dynamics of cooperators and defectors in a population in which groups
of individuals engage in N-person, non-excludable public goods games. We anal-
yse two N-person dilemmas: the N-person Prisoner’s dilemma (NPD), where the
collective benefit with the cost invested, and the N-person Snowdrift game (NSG),
where the benefit is fixed but the cost is shared among those who contribute. We dis-
cuss both infinite and finite populations, imposing the existence of a threshold above
which collective action is materialized. In infinite populations, the introduction of a
threshold leads, in both dilemmas, to a unified behavior, characterized by two inte-
rior fixed points. The fingerprints of the interior fixed points remain effective in finite
populations, despite evolution leading the population inexorably to a monomorphic
end-state. Whenever the group size and population size become comparable, we find
that spite sets in, rendering cooperation unfeasible in both cases.
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1 Introduction

The last decades have witnessed the discovery of key insights into the emergence
and sustainability of cooperation at different levels of organization [1, 6, 13, 17, 21,
22,26, 27,28, 29, 32, 33, 34, 30, 36, 37, 5]. Special attention has been paid to two-
person dilemmas such as the Prisoners Dilemma (PD), the Snowdrift Game (SG)
[40] and the Stag-Hunt game (SH) [37], which constitute powerful metaphors to
describe conflicting situations often encountered in the natural and social sciences
[21, 37]. Many real-life situations, however, are associated with collective action
based on joint decisions made by a group often involving more than 2 individuals.
This is the case, for instance, in the upper primates, where problems of collective
action are recurrent [6, 3]. These types of problems are best dealt-with in the frame-
work of N-person games [14, 35, 10, 7, 20, 15, 16]. Describing the evolutionary
dynamics of many-person games provides a richer scenario of possibilities, and an
intrisic additional complexity, as captured by the words of late W. D. Hamilton [12]:

“The theory of many person games may seem to stand to that of two-person
games in the relation of sea-sickness to a headache.”

The prototypical example of a Public Goods Game (PGG) is captured by the
so-called N-person PD (NPD). It involves a group of N individuals, who can be
either Cooperators (C) or Defectors (D). Cs contribute a cost ¢’ to the public good,
whereas Ds refuse to do so. After all individuals are given the chance to contribute,
the accumulated contribution is multiplied by an enhancement factor ”F”, and the
total amount is equally shared among all individuals of the group. In other words, if
there are k Cs in a group of N individuals, Ds end up with kF¢/N, whereas Cs only
get kFc/N — ¢, that is, in mixed groups Cs are always worse off than Ds.

Consider, for instance, group hunts of 3 or 4 lionesses in Etosha National Park,
Namibia [39]. Two lionesses, the wings, attack a group of prey from either side
panicking them to run forward. They run right into one or two other lionesses, posi-
tioned as centres, who are waiting for them. This kind of hunt is highly successful.
However, if analyzed in more detail, one immediately recognizes that the hunt is
unfeasible with only one or two participants, but it becomes feasible with three
and even better with four. In other words, this is no longer a NPD, as one needs a
minimum threshold of participants to achieve a public good. Instead, this example
configures what one may call a generalized, or N-person, stag-hunt game, in the
sense that there is a cooperative equilibrium where if others do their part, it is best
for you to do yours as well.

Variations on this kind of cooperative hunting have been observed in other species,
such as Chimpanzees in the Tai forest [4] and African wild dogs [9]. In animals,
other collective actions, such as lions defending a kill against a pack of hyenas, can
also be seen as generalized Stag Hunt games [23]. In human affairs we also find
collective action problems that can be viewed as generalized Stag hunts, not only
in literal hunts such as the whale hunts discussed in [2], but also in international
relations [18] and macroeconomics [8].

Despite their abundance, N-person generalizations of the Prisoner’s Dilemma
and the Stag-Hunt games do not exhaust the spectrum of collective action dilemmas
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encountered in the natural and social phenomena. Indeed, generalized snowdrift
games appear all too often. In the standard SG, two individuals are driving on a
road which is blocked by a snowdrift. To proceed with their journey home, the snow
must be removed. Three possibilities occur: No-one shovels, and hence no-one gets
home: The two drivers cooperate and shovel, and both get home, each one sharing
the workload of shoveling the snow. If only one driver decides to shovel, both get
home despite one driver incurring the entire cost of snow shoveling. If we define
the benefit of getting home as b and the cost of shoveling as c, then if both drivers
cooperate and shovel, each gets b — ¢/2. If both defect, no one gets anything - 0.
If one cooperates and the other defects, the Cooperator (C) gets b — ¢ while the
defector (D) gets b. Assuming, as usual, that the benefit is greater than the cost, we
get a payoff ranking characteristic of a chicken, hawk-dove or snowdrift dilemma
[22]. The generalization of this game to a public goods game involving N players
is straightforward. To remain with the previous example, we can imagine that the
snowdrift occurs at a cross-road where N drivers meet. Again, all want to go home
(getting all the same benefit b), but perhaps not all are willing to shovel. If all shovel,
then each gets b —c/N. But if only k individuals shovel (C), they get b — c¢/k whereas
those who defect by refusing to shovel get home for free and get b.

There are many examples in our everyday life and throughout our history, where
instances of N-person snowdrift games (NSG) are or have been at stake [5] (see
below). Moreover, in some of these instances, it is often the case that no common
benefit is produced unless its cost is shared by a minimum threshold of cooperating
individuals. In keeping with the metaphor introduced above, the fact that individuals
have a finite capacity of clearing the snow, combined with the risk that a new snow-
drift may happen, further blocking the road, implies that a minimum threshold of
people must cooperate (shovel) so that the road is cleared before the next snowdrift
eventually happens.

The existence of thresholds in NSG abounds. For example, not all Amish need

to participate in the construction of a church for the church to be built [44]. Yet,
the more contribute the better, since the effort to be invested by each member of the
construction group will be smaller. On the other hand, the cost of building a church
cannot be provided by a single individual. In this example, the public good is the
church, so once it is built all get access to this non-excludable public-good. How-
ever, the more Amish help building the church, the less effort (cost) is required to
each of them to produce the public good, given that the minimum threshold of indi-
viduals required to build the church is met. In addition, the size of the church, or the
benefits of having one, do not necessarily increase with the number of individuals
that worked on it.
Similarly, when steady and heavy rain signals the possibility of large floods, the set
up of protection via sandbag levees requires the coordinated action of a minimum
threshold of people for the flood to be prevented letting all enjoy the same benefit.
Once this threshold is surpassed, the more people help, the less the individual cost
of each of the contributors.

Hence, as with the NPD, the need for collective coordination in the NSG intro-
duces a behavioral tension common to conventional coordination games [36, 37]:
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if the others do their work, it might be profitable to do it as well; otherwise you
definitely gain from opting out.

For a given group of size N, we define a threshold 1 < M < N such that only when
the number k of Cs in the group is at least M (k > M) a public good is achieved. In
all cases, a cost ¢ must be paid before a common benefit b is produced. For the NPD,
the benefit increases with the cost invested. For the NSG, the benefit is fixed but the
cost is shared among those that contribute.

In Table 1 we summarize the payoffs of Cs and Ds in any case (as usual in N-
person games, k = 0 means no cost is expended and no benefit is produced).

Table 1 Payoft values for the NPD and NSG.

NPD NSG
Payoff obtained C D C D
1<k<M —c 0 —4 0
k>M Tk ¢ Tk b—¢ b

We shall assume a population of size Z, from which groups of size N are ran-
domly sampled. We shall first study the conventional limit in which Z — oo, under
deterministic replicator dynamics. Subsequently, we shall consider stochastic dy-
namics in finite populations. The fitness of individuals is determined by their payoff
collected when engaging in N-person PGG, requiring at least 0 < M < N individuals
to produce any public good at all. We shall find that requiring a minimum thresh-
old of cooperators to produce a benefit leads to the appearance of both coexistence
and coordination features in an otherwise defector dominance game (NPD), and to
coordination features in an otherwise coexistence game (NSG). Hence, we obtain a
richer evolutionary dynamics scenario in infinite populations, which, at least qual-
itatively, brings about a unified picture of N-person games with a threshold. We
find that this scenario remains qualitatively valid whenever we remove the approxi-
mation of assuming infinite populations, although the stochastic dynamics only ends
whenever a monomorphic population is reached. Nonetheless, for small populations
and/or group sizes spanning nearly the entire population, we observe the “spite” ef-
fect first noted by Hamilton [11] in 1970, and which works against cooperation.

2 Evolutionary Dynamics in Infinite Populations

Let us assume a very large population, a fraction x of which is composed of Cs, the
remaining fraction (1 — x) being Ds. Let groups of N individuals be sampled ran-
domly from the population. Such a random sampling leads to groups whose com-
position follows a binomial distribution. The fitness of the Ds is given by
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N—1 /nr
o= ¥ (Ve . (1)

k=0
whereas the average fitness of Cs is given by

N—-1

fe=Y (N,:1>xk<1 — )N e (k+ 1), )

k=0

where we impose that the binomial coefficients satisfy (];) =0if k< 0. IIc and ITp
are defined in Table 1 for each of the games. The evolutionary dynamics is given
by the replicator equation [17],

x=x(1-x)(fc—fp) €)

following that there exists an interior fixed point, x*, whenever Q(x*) = fo(x*) —

fD(X*) =0.

2.1 N-person PD with thresholds in infinite populations

For the NPD, with a given threshold M, the payoff of Defectors and Cooperators can
be explicitly written as (see Table 1) ITp = (kFc¢/N)0(k— M) and Ilc = IIp — ¢, re-
spectively, where the Heaviside step function 6 (x) is equal to 1 whenever x > 0 and
equal to O otherwise. The introduction of a threshold (M > 1) leads to a symme-
try breaking of the sampling, which does not allow a closed form expression for
the fitness. Thus, the determination of the possible interior equilibrium points, i.e.,
the zeros of Q(x) has to be done numerically. However, a great deal of information
can be obtained without solving explicitly for Q(x) = 0.Indeed, as shown in [31],
introducing I'lc and IIp above in Egs. (1) and (2) leads to

0(x) = fe(x) — fp(x)
M—1 N
=c <]I\; - 1) —C%(l —x)N*M kg{) <Nk 1) (1 _M6k,M71))d((l —x)Mfl*k.

In what follows, we shall strictly assume that N > 2. For most of the time, we shall
assume that 1 < M < N; the degenerate cases can be handled as well, and the reader
is referred to [31] for details. Let

R(x) :Ni (N_ 1)xk(l x)N_l_kJrM(A]\/;:ll)xM_l(lx)N_M )

k=M k

— M-l <Ail <Nk 1)XJ<—M+1(1 x)N—l—k+M(A1\;_i> (1 x)N—M) .

k=M
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Fig.1 a) Interior fixed points of the replicator equation for N-person PD games with coordination
threshold. The curves provide the location of the critical values of the fraction of cooperators
(xr,xg) at which fc = fp . For each value of F (defining a horizontal line), the critical values are
given by the intersection of this line with each curve (one curve for given fixed M and N = 20).
Scenarios with none, one and two interior fixed points are possible as detailed in the lower panel.
b) Dynamics of N-person PD in infinite populations with coordination threshold. Empty circles
represent unstable fixed points; full circles represent stable fixed points and arrows indicate the
direction of evolution by natural selection. For each case, the solid (orange) lines represent the
typical shape of the function fc(x) — fp(x). The quantity A* = R(M/N) corresponds to the value
of F at which the minimum of each curve in a), for fixed M, is reached.

Since,
N-1 N-1_ 'y (N-1 N—1—k

1=1""T=(x+1-x) —;{)( ' )xk(l—x) ,

we have that
O(x) = —c(1=AR(x)), )

with A = F/N.
Lemma 1. The polynomial R defined above satisfies
1. R(0) =0;
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2.R(1)=1;

3. R(x)>0, xe(0,1);

4. Let x* = M/N. Then we have that R (x) > 0 for 0 < x < x*, and R'(x) < 0 for
x* < x < 1. In particular, R'(x*) = 0, and x* is a point of maximum of R with
R(x*) > 1.

Proof. First, notice that 1., 2. and 3. are straightforward from the form of the poly-
nomial R(x); cf. (4).
To prove (4), we let k = N — 1 — K/, and on noting that

W5t = (%)

we may write

N—-M—1
N-—1 / / N-—1
R(x) = M- N-M=K (1 _ W Ly | —x)N-M
) L,ZO(,C,) - m (N 1)
N—M—1 14 N-M
N-—1 1—x N-—1 1—x
—1
8 ) ) ()]
Let
1—x
z= .
X
Then, we have that .
A
= —_—— = —— 1
z 2 x(z+ )
Thus,
N-M
Rx)=x""p(x), pG)=Y a,
i=0
where

N-1 . N-1
a; = ; , 0<i<N—-M and ay_y=M M—1

We now compute R':

R(x) = (N=1Dx"2p(e) =" 2p (&) (e +1)
=N 2[(N=1)p(2) — (z+ 1)p'(2)]

N-M  N-M  N-M
=xN"2 (N—l) Z a7 — Z ia;7' — Z ia,-z’_l
i=0 i=1 i=1

N-M  N-M  N-M
=N (N=Dag—ar+(N—=1) Y aiz' = ) iaid = Y a2 |
i=1 i=1 i=2
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Since ag = 1 and a; = N — 1, and writing i = i+ 1 in the last sum, we find that

N-M  N-M  N-M-1 A
Rx)=x"2|{(N-1) Y ad— Y iaz'— Y (i+1Daiz | =+"28(),
i=1 i=1 i=1
where
N—M—2 '
S(Z) = [(N— 1-— i)a,' — (i+ 1)a,-+1]zl+ [MaN_M_l — (N—M)aN_M] ZNiM?l —l—(M— l)aN_MZNiM.

i=1
On noting that
(4)-540)
we obtain, for 1 <i< N — M, that

N—-1-i

it1

aji+1 =
Hence,

[(N—1—i)a;— (i+1)ai11]z' =0.

Also, we have

May_y—1 — (N —M)ay_y = M(NM 1> —(N—M) (AA;_ 11> ,

which on calling upon (6) yields

M(NA; 1) —(N—M) (Zj) — (N—M) (NA; 1) —(N—M) (Z:D :—(N—M)(M—l)(ﬁl\;:ll>.

Thus, we can write

S() = N1 (Zj) [—(V—M)(M — 1)+ M(M — 1)3]

which yields

N—-1

R/(x) :fol(l _x)Nfol <M X

)[—(N—M)(M—l)—i—M(M—l)z] 7

For x € (0,1), (7) vanishes at

. N-M 1-M/N
M M/N

Z

Since
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is1—1.

Also, from (7), we see that

1. for 0 <z <z%, R'(x) <O0;
2. forz>z*, R'(x) >0

Also, z = (1 —x)/x is monotonically decreasing and maps (0,1) in (0,e0) (thus
reversing the orientation), which yields that 0 < z < z* corresponds to x* < x < 1
and z > z* corresponds to 0 < x < x™.

This proves (4).

Using the information provided by Lemma 1, we have

Theorem 1. Let A* = 1/R(x*). Then we have that 0 < A* < 1. Moreover, we have
that Q(x) satisfies:

1. For A < A* there are no roots in (0,1);

2. For A = A* there exists one double root at x = x*;

3. For A* < A <1 there are two simple roots {xp,xg}, with x; € (0,x*) and xg €
(x*,1].

4. For A > 1 there is only one root in (0,x*).

From Theorem 1, we can infer the the complete evolutionary dynamics of the sys-
tem. Thus, if F < A*N, no interior equilibrium is possible. For F = A*N,x =M /N

is a unstable equilibrium. For
F

AF < N <1,
we have the existence of two equilibria. The leftmost equilibrium is always less
than M /N and it is unstable. On the other hand, the rightmost equilibrium is alwyas
greater than M /N, and it is stable. The reader is referred to [31] for the detailed
proofs.

Overall, the analysis above shows that the properties of Q(x) lead to a very inter-
esting dynamics of the replicator equation, with possibly two interior fixed points
(xz, and xg), as illustrated in Fig. 1, for N = 20, different values of 1 < M < 20 and
variable F. Note, in particular, that the fact that R'(x;) > 0 and R'(xg) < 0 [31] al-
lows us to classify immediately x; as an unstable fixed point whereas xg, if it exists,
corresponds to a stable fixed point, as illustrated also in Fig. 1. Moreover, when
F/N=R(M/N), M/N is the unique interior and unstable fixed point.

Between these two limiting values of F', and given the nature of the interior fixed
points x, and xg, one can easily conclude that below x;, all individuals will ultimately
forego the public good. Conversely, for all x > xr, the population will evolve towards
a mixed equilibrium defined by xg, corresponding to a stable fixed point of the
associated replicator equation (even if, initially, x > xg). Similar to the N-person
PD, whenever F /N < R(M/N), fc(x) < fp(x), for all x € (0, 1), which means that
all individuals will end up foregoing the public good.
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2.2 N-person SG with thresholds in infinite populations

For the NSG, we may formally write the payoffs in Table 1 in the form
Ip(k) =bO(k— M) (®)
for the payoff of a defector in the group and

Te(k) = Ip (k) — 20(k—M) = (1~ 6(k —M)) ©)

¢

M
for the payoff of a cooperator in the same group. Under these assumptions, one can
show that Q(x) now reads [38]

0(x) =xiN {Nlc) (A]\;:DW@ VM

1+A:):01 <1Z>xk(1x)1v_k (;41)” (10

Although the polynomial Q in this case is quite distinct from the NPD case, we
can show similar results for the internal fixed points. More precisely, let ¥y = ¢/b.
We find that it will be more appropriate to study

Z:DXMU—X)NM—

1+A:):0] (Z)xk(l —x)Nk (A]; - 1>1 .

p(x,7) has the same interior roots as Q(x), and we made the dependence on ¥ ex-
plicit. Notice also that p(x, ) implies the same dynamics for the Replicator equation
as that implied by Q(x) in (0,1) up to a time rescaling. We then have the following
result

p(x,y) =N (

Y

Theorem 2. There exists 0 < ¥ and 0 < X < 1 such that, if

1. 7/y < 1, then the evolutionary dynamics has no interior equilibria.

2. ¥/v=1, then X is a unique interior equilibrium.

3. ¥/v> 1, then there are two interior equilibria x;, < X < xg. Moreover, xy is always
an unstable equilibrium point, while xg is always a stable point.

In order to prove Theorem 2, it turns out that is more convenient to determine what
v will render a given x € (0, 1) an interior point, rather than determining what x are
equilibria for a given 7. Let us define

0, x=0,
I'(x) = N-1 M(1—x)N—M (11)
(=) S gy O <x =t
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ThenI": [0,1] — R is continuous in [0, 1] and differentiable in (0, 1). Also, by solv-
ing for y the equation p(x,y) = 0, it is straightforward to verify that we have the
identity

p(x,I'(x))=0. (12)

Ultimately, I"(x) is responsible for the existence of a cost-to-benefit ratio at which a
given interior x can become an equilibrium of the replicator dynamics. The critical
value ¥ corresponds to the first interior equilibrium which emerges when ¢/b = ¥
and which divides the unit interval into two pieces, in which the stable and unstable
equilibria remain confined whenever ¢/b < ¥. The thrust of the argument is to study
the number of solutions of I'(x) = 7, for a given 7, which then can be used to prove
Theorem 2. In order to achieve our goal, we establish a series of results about I'. In
what follows, we shall assume N >2and 1 <M < N.

Proposition 1. There is a unique € (0,1) such that I''(¥) = 0. Such x will be the
unique point of global maximum for I'.

Proposition 2. Let ¥ = I'(X), with X given above. Then the equation I'(x) = 7y has

1. two solutions, xp, and xg, for y < ¥. Moreover xi, € [0,%) and xg € (%,1].
2. one solution for y=7%;
3. no solution for y > 7.

Finally, the following asymptotic result allows an approximate determination of
X.

Proposition 3. Let xo = % and assume that

N-—-M
O<e= <1
Then, we have that
xgl N N—M
-t —M+1 N—M+2
X=X M<M1)£ +0(¢ ).

Therefore, when the threshold is comparable in order to the size of the group, we
have that while the critical equilibrium is not quite M/N, it is quite close to it. We
refer the interested reader to [38] for detailed proofs.

As in the case of the NPD, the exact position of the roots of Q(x) in the NSG
regime may be cumbersome to find analytically, but are easy to compute numeri-
cally. Fig. 2 pictures the position of the interior roots of Q(x) for a fixed group size
of N = 20 and variable threshold values of M (main panel).

For each value of M there is a critical benefit-to-cost value b/c above which two
interior fixed points emerge. These can be found in Fig. 2 by drawing a horizontal
line at a fixed b/c — its intersection with the appropriate curve for a given threshold
M provides the location of the points.

As shown above and illustrated in Fig. 2, one root corresponds to an unstable
fixed point (x7) and the other to a stable fixed point (xg) inducing a coexistence
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Fig. 2 Equilibria of the N-person Snowdrift Game with threshold. We assume infinite, well-mixed
populations, fix the group size at N = 20 and vary the threshold M above which cooperation leads
to a common benefit b. The total cost involved is c. In the main panel we show how the occurrence
of a threshold leads to the appearance of at most 2 interior fixed points x;, and xg, which can be
found via the intersection of a horizontal line with the appropriate curve (illustrated for M = 10);
in this case, the leftmost root is always an unstable fixed point whereas the rightmost corresponds
to stable fixed point, as illustrated in the small panel in the lower right (see main text for details).
For a given M /N, there is a critical value ¥ for the critical cost-to-benefit ratio ¢ /b below which the
2 interior roots discussed above always exist. In the small panel (upper right) we show how these
interior fixed points scale with variable group size N for some values of the b/c ratio indicated. For
¥b < ¢ no interior fixed points exist and defectors dominate unconditionally, whereas for 76 = ¢
the only root corresponds to an unstable fixed point.

between Cs and Ds. This means there is a range of values of x (x; < x < xg), in
which Cs are favored against Ds (fc(x) > fp(x)). When x > x;, the system will
always evolve to the mixed configuration given by xg, and below x;, all individuals
will end up refusing to contribute to the public good.

3 Evolutionary Dynamics in Finite Populations

Let us focus on a well-mixed population of size Z in the absence of mutations. Sam-
pling of individuals is no longer binomial, following a hypergeometric distribution.
Consequently, the average fitness of Cs and Ds can now be written as

felk) = (ij)lfzg(k;l) (5 e a

and
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Z—1\""G R\ (Z—k—1
() EOC oo
respectively.

The fraction of cooperators is no longer a continuous variable, varying in steps
of 1/Z. We adopt a stochastic birth-death process [19] combined with the pairwise
comparison rule [41, 42, 43] in order to describe the evolutionary dynamics of Cs
(and Ds) in a finite population. Under pairwise comparison, two individuals from the
population, A and B are randomly selected for update (only the selection of mixed
pairs can change the composition of the population). The strategy of A will replace
that of B with a probability given by the Fermi function (from statistical physics)

1

P e Bla i) (15)

The reverse will happen with probability 1 — p. The quantity §, which in physics
corresponds to an inverse temperature, controls the intensity of selection: For
B << 1 selection is weak, and one recovers the replicator equation in the limit
Z — oo [41, 42, 43]. For arbitrary 3, the quantity corresponding to the right hand
side of the replicator equation, specifying the gradient of selection, is given in finite
populations by [41, 42, 43]

- gzgktanh{g[fc(k) — fo(k)]} (16)

gk) =T (k) =T (k)

The right hand side of g(k) is similar to the replicator equation, only that the (non-
linear) pairwise comparison [41, 42, 43] defined in Eq. 15 leads to the appearance of
the hyperbolic tangent of the fitness difference, instead of the fitness difference. This
has implications in the characteristic evolutionary times, which now depend on f3
[41, 42, 43], but not in what concerns the roots of g(k). Importantly, the evolutionary
dynamics in finite populations will only stop whenever the population reaches a
monomorphic state (k = 0 or k = Z). Hence, the sign of g(k), which indicates the
direction of selection, is important in that it may strongly influence the evolutionary
time required to reach any of the absorbing states.

3.1 N-person PD with thresholds in finite populations

Whenever M = 0 (NPD without the requirement to coordinate to obtain collective
benefits) we may write

felk) = folk) = ¢ LFV (1 - Z‘i) - 1] a7

which is independent of k being, however, population and group size dependent.
This means frequency independent selection. In particular, whenever the size of the
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a)

0.20

0.10

0.00

-0.10
0.10

g(k)

0.05

0.00

-0.05

-0.10

Fig. 3 Behaviour of g(k) for a N-person PD game with coordination threshold M = 5 in a popu-
lation of variable size Z and fixed group size N = 10. a) Since F' = 12 > N, the game becomes a
pure coordination game in infinite populations. In finite populations, however, it strongly depends
on Z: For Z = N, Cs are always disadvantageous and evolutionary dynamics leads mostly to 100%
Ds. For Z = 20 (and using a terminology which is only correct for Z — o0), we obtain a profile
for g(k) evidencing the emergence of a coordination point and a coexistence point. For increas-
ingly large Z (e. g., Z = 40), the coexistence point disappears and we recover the behaviour of the
replicator dynamics (see Fig. 1: Selection favours Cs above a given fraction k/Z and Ds below that
fraction which, in turn, depends on the population size. b) Since F = 8 < N, the game exhibits
now 2 interior fixed points in infinite populations (red curve). Similar to a), for small Z Cs are
disadvantageous for all k. Unlike a), however, now two interior fixed points emerge together for a
critical population size, and remain for larger population sizes.

group equals the population size, N = Z, we have that fc(k) — fp(k) = —c and
cooperators have no chance irrespective of the value of the enhancement factor.
This contrasts with the result in infinite, well-mixed populations (Z — o), where
to play C would be the best option whenever F > N. For finite populations, the
possibility that group size equals population size leads to the demise of cooperation.
Moreover, given the independence of fc(k) — fp(k) on k in finite populations, for a
given population size, it is straightforward to obtain a critical value of F for which
selection is neutral, and above which cooperators will win the evolutionary race.

From the equations above this critical value reads F = N(1—2=)~1.
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Fig. 4 a) Equilibria of the N-person snowdrift game with threshold in finite populations. Popula-
tion size is Z = 50 and group size is N = 20. We vary the threshold M above which cooperation
leads to a common benefit b. For each k/Z we show the corresponding b/c at which g(k) = 0 (cf.
Eq. (13)). Whenever the population size is large compared to group size, selection in finite popula-
tions is qualitatively similar to that in infinite populations. b) Effect of group size in the evolution
of cooperation.We plot g(k) as a function of the fraction of cooperators k/Z, for b/c = 5. We fixed
the population size at Z = 50 and the threshold at M = 5, while varying the group size N. As the
group size approaches the population size, the range of values of k/Z for which cooperation is
advantageous (g(k) > 0) is reduced.

Let us now discuss the NPD with 1 < M < N < Z. Whenever N = Z, the result
is easily inferred from the NPD above — all individuals in the population will ulti-
mately forego the public good. This will happen, in finite populations, irrespective
of the existence (or not) of a threshold M. However, whenever N < Z the thresh-
old brings about a strong disruption of the finite population dynamics, which we
illustrate numerically, given the unappealing look of the analytical equations.

Let us start with the case in which F > N, that is, the regime for which we obtain
a pure coordination game with a single (unstable) fixed point in the replicator dy-
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namics equation (cf. Fig. 1). In finite populations the possible scenarios are depicted
in the upper panel of Fig. 3. Clearly, for small population sizes, cooperators are al-
ways disadvantageous. With increasing Z, however, one approaches the replicator
dynamics scenario (see Fig. 1), despite the fact that, e.g., for Z = 20, convergence
towards the absorbing state at 100% Cs is hindered because Cs become disadvan-
tageous for large k. Indeed, for this population size, Cs are advantageous only in
a small neighbourhood of k/Z = 0.5, being disadvantageous both for smaller and
larger values of k/Z. In other words, and despite the fact that evolution will stop
only at k = 0 or k = Z, the time it takes to reach an absorbing state will depend
sensitively on the population size, given the occurrence (or not) of interior roots of
g(k).

Whenever F < N, yet above the critical limit below which Cs become disadvan-
tageous for all x in Fig. 1, we observe that for small population sizes Cs are always
disadvantageous, and the two interior fixed points of the replicator dynamics equa-
tion only manifest themselves above a critical population size, as illustrated in the
lower panel of Fig. 3.

3.2 N-person SG with thresholds in finite populations

In Fig. 4a, we show how the qualitative behavior of selection under stochastic dy-
namics in finite populations mimics closely that already encountered in the previous
section (c.f. Fig. 2), associated with deterministic dynamics in infinite populations.
Although the population will always fixate in one of the two absorbing states (k =0
and k = Z in the absence of mutations), selection will act to drive the population
toward a composition reflecting the rightmost root of g(k), which constitutes the
deepest point of the basin of attraction of the evolutionary dynamics.

On the other hand, as the group size approaches the population size the previ-
ous basin of attraction is reduced. In Fig. 4b we show a typical behavior of g(k)
as a function of the fraction of cooperators k/Z for fixed population size Z = 50,
threshold M = 5 and different group sizes N. As N increases, cooperation becomes
increasingly unfeasible — in the limit when N — Z, cooperators have no chance and
defectors dominate unconditionally. Moreover, for a given b/c ratio, the existence of
a finite population analogue of a stable root of g(k) (in infinite populations) occurs
for values of the frequency k/Z of cooperators which decrease as N increases. This
has been first noted by Hamilton [11] and reflects the occurrence of “’spite” which
works against cooperation, as illustrated in both panels of Fig. 4.

4 Discussion

In sections 2 and 3 we show how the generalized the version of the NPD and NSG
conventional dilemmas can converge to a completely new evolutionary scenario. Ir-
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respectively of the game played, in infinite, well-mixed populations, the existence
of a threshold opens the possibility for the appearance of two interior fixed points
in the replicator equation (x; and xg). The one at lower frequency of cooperators is
always an unstable fixed point, which determines a threshold for cooperative collec-
tive action. The other, at higher frequency of cooperators, is a stable fixed point, and
hence determines the final frequency of cooperators in the population, assuming the
coordination threshold is overcome. Moreover, both dilemmas converge to a pure
coordination game whenever the coordination threshold approaches the group size.

In the particular case of the NSG with a given threshold M and group size N,
there is always a critical cost-to-benefit ratio ¢/b above which the two interior roots
discussed above emerge. The same qualitative behavior can be observed in finite
populations. However, as soon as the group size approaches the population size,
cooperation becomes increasingly unfeasible.

In the NPD, besides the above mentioned regime with two interior roots, there
are also the possible outcomes of no cooperation or of a pure coordination game,
which depends sensitively on the minimum number of cooperators M in a group of
N individuals required to produce any public good. Once the simplifying assump-
tion of an infinite population size is abandoned, the evolutionary dynamics of the
NPD game is profoundly affected, mostly when the population size (Z) is compa-
rable to the group size (N). In this regime, one observes an overlap of the different
scenarios observed in infinite populations. Hence, for Z = N, cooperators are always
disadvantageous, irrespective of the existence or not of a threshold. For Z > N, the
direction of selection in a finite population is strongly size dependent. For fixed
F > N, there is a critical value, Z;, above which the interior roots of g(k) emerge,
which constitute the finite-population analogs of x; and xg in infinite populations
(cf. Fig.1). Above a second critical value, Z,, xg disappears, and one ends up with
a coordination game. For M < F < N and a small population size, that is, F < N
but yet above the critical value A* = R(M/N) defined in section 2.1, cooperators
are always disadvantageous; however, above a critical population size (Z¢) the inte-
rior roots of g(k) emerge simultaneously and the evolutionary dynamics approaches
that observed in infinite populations. Finally, for F' < M cooperators have no chance
irrespective of the population size. Such strong size dependence (present in both
dilemmas), with an impact which is stronger for smaller population sizes, can be
directly traced back to the fact that, for smaller populations, the hypergeometric
sampling of individuals into groups significantly deviates from binomial sampling.
This, in turn, reflects the intuition that, in small populations, choices are reduced,
and this must influence the overall evolutionary dynamics.

5 Conclusions

Unlike two-person games, current models of collective action have typically over-
looked the necessity of some form of coordination among individuals, pervasive in
biological and social collective dilemmas. From social organization [5] to the salva-
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tion of the planet against environmental hazards[24, 25], examples abound where a
minimum number of individuals, which does not necessarily equal the entire group,
must simultaneously cooperate before any outcome (or public good) is produced.

In this chapter we investigate the predictions of evolutionary game theory in both
finite and infinite populations, whenever a minimum threshold of individuals must
cooperate simultaneously in a group before any viable public good is achieved. This
study has focused in two of the most important collective dilemmas: the N-person
snowdrift game (NSG) [38] and N-person prisoner’s dilemma (NPD) [31]. In do-
ing so, we uncover a new framework in which the advantage or not of cooperators
depends sensitively on group and population size, as well as on the threshold for
collective action. Such interplay leads to rich evolutionary scenarios, impossible
to anticipate based on the traditional assumption of infinite populations, providing
valuable insights into the variety and complexity of many person social dilemmas,
inescapable especially among humans.

In addition, it is noteworthy that irrespectively of the distinctive features of the
N-person Prisoner’s dilemma (a defector’s dominance dilemma) and the N-person
Snowdrift game (a co-existence game), the existence of a coordination threshold
is able to produce an unifying framework associated with a generalized stag-hunt
game [31]. Moreover, the necessity of coordination is shown to increase the equilib-
rium fraction of cooperators, even if this enhancement comes together with a strong
dependence on the initial level of cooperation, since co-existence between cooper-
ators only emerges when a minimum number of cooperators is already present in
the population. This result is of particular relevance given that the existence of coor-
dination thresholds constitutes a rule, rather than the exception. Finally, our results
re-inforce the idea that even minor diferences in the nature of collective rewards
and/or costs can have a profound effect in the final outcome of evolution.

Acknowledgements This work was supported by FCT Portugal (JMP), FAPERJ Brazil (MOS)
and FNRS Belgium (FCS).

References

1. Axelrod, R., Hamilton, W.: The evolution of cooperation. Science 211(4489), 1390-6— (1981)

2. Beding, B.: The stone-age whale hunters who kill with their bare hands (2008)

3. Boehm, C.: Hierarchy un the Forest: The Evolution of Egalitarian Behavior. Harvard Univer-
sity Press (1999)

4. Boesch, C.: Cooperative hunting roles among tai chimpanzees. Human Nature-an Interdisci-
plinary Biosocial Perspective 13(1), 27-46— (2002)

5. Bowles, S.: Microeconomics: Behavior, Institutions and Evolution. Princeton University Press
(2003)

6. Boyd, R., Richerson, P.: Culture and the Evolutionary Process. University of Chicago Press)
(1985)

7. Boyd, R., Richerson, P.J.: The evolution of reciprocity in sizable groups. J Theor. Biol. 132
(1988)

8. Bryant, J.: Coordination theory, the stag hunt and macroeconomics. In: Problems of Coordi-
nation in Economic Activity, pp. —. Dorcrecht:Kluwer (1994)



Coordinating Towards a Common Good 19

9.

10.

11.

12.

13.

14.
15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.
27.
28.
29.

30.

31

32.

33.

34.

35.

Creel, S., Creel, N.: Communal hunting and pack size in african wild dogs, lycaon-pictus.
Animal Behaviour 50, 1325-1339- (1995)

Dawes, R.M.: Social dilemmas. social dilemmas. social dilemmas. Annual Review of Psy-
chology 31, 169-193 (1980)

Hamilton, W.: Selfish and spiteful behaviour in an evolutionary model. Nature 228, 1218—
1220- (1970)

Hamilton, W.: Biosocial anthropology. In: Biosocial anthropology, pp. 133—155—. Malaby
Press, London (1975)

Hammerstein, P.: Genetic and Cultural Evolution of Cooperation. MIT press, Cambridge,
MA. (2003)

Hardin, G.: The tragedy of the commons. Science 162(5364), 1243—-8— (1968)

Hauert, C., Michor, F., Nowak, M., Doebeli, M.: Synergy and discounting of cooperation in
social dilemmas. J Theo Bio pp. 195-202— (2006)

Hauert, C., Traulsen, A., Brandt, H., Nowak, M., Sigmund, K.: Via freedom fo coercion: The
emergence of costly punishment. Science 316, — (2007)

Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge Univ.
Press, Cambridge, UK (1998)

Jervis, R.: Cooperation under the security dilemma. World Politics 30, 167-214— (1978)
Karlin, S., Taylor, H.: A first course in Stochastic Processes, vol. 2nd edition. Academic,
London (1975)

Kollock, P.: Social dilemmas: The anatomy of cooperation. Annu. Rev. Sociol. 24, 183-214—
(1998)

Macy, M., Flache, A.: Learning dynamics in social dilemmas. Proc Natl Acad Sci U S A
99(3), 7229-36 (2002)

Maynard-Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cam-
bridge (1982)

Maynard-Smith, J., Szathmdary, E.: The Major Transitions in Evolution. Freeman, Oxford
(1995)

Milinski, M., Semmann, D., Krambeck, H., Marotzke, J.: Stabilizing the earth’s climate is not
a losing game: Supporting evidence from public goods experiments. Proc Natl Acad Sci U S
A 103(11), 3994-3998- (2006)

Milinski, M., Sommerfeld, R., Krambeck, H., Reed, F., Marotzke, J.: The collective-risk social
dilemma and the prevention of simulated dangerous climate change. Proc Natl Acad Sci U S
A 105(7), 2291-2294— (2008)

Nowak, M.: Evolutionary Dynamics. Belknap/Harvard (2006)

Nowak, M.: Five rules for the evolution of cooperation. Science 314(5805), 1560-3— (2006)
Nowak, M., Sigmund, K.: Evolutionary dynamics of biological games. Science 303(5659),
793-9- (2004)

Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.: A simple rule for the evolution of coop-
eration on graphs and social networks. Nature 441(7092), 502-5— (2006)

Pacheco, J.M., Santos, F.C., Chalub, FA.C.C.: Stern-judging: A simple, successful norm
which promotes cooperation under indirect reciprocity. PLoS Computational Biology 2(12),
e178 (2006)

Pacheco, J.M., Santos, F.C., Souza, M.O., Skyrms, B.: Evolutionary dynamics of collective ac-
tion in n-person stag-hunt dilemmas. Proceedings of the Royal Society B: Biological Sciences
276(1655) (2009)

Santos, F., Pacheco, J.: Scale-free networks provide a unifying framework for the emergence
of cooperation. Phys Rev Lett 95(9), 098,104— (2005)

Santos, F., Pacheco, J., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured
heterogeneous populations. Proc Natl Acad Sci U S A 103(9), 3490—4— (2006)

Santos, F., Santos, M., Pacheco, J.: Social diversity promotes the emergence of cooperation in
public goods games. Nature 454(7201), 213-6— (2008)

Schelling, T.C.: Hockey helmets, concealed weapons, and daylight saving: A study of binary
choices with externalities. J. Conflict Resolution 17(381) (1973)



20

36.

37.

38.

39.

40.

41.

42.

43.

44.

Jorge M. Pacheco, Francisco C. Santos, Max O. Souza, and Brian Skyrms

Skyrms, B.: The stag hunt. Proceedings and Addresses of the American Philosophical Asso-
ciation 75(2), 31-41- (2001)

Skyrms, B.: The Stag Hunt and the Evolution of Social Structure. Cambridge University Press
(2004)

Souza, M.O., Pacheco, J.M., Santos, F.C.: Evolution of cooperation under n-person snowdrift
games. Journal of Theoretical Biology (in press)(doi:10.1016/j.jtbi.2009.07.010) (2009)
Stander, P.: Cooperative hunting in lions - the role of the individual. Behavioral Ecology and
Sociobiology 29(6), 445-454— (1992)

Sugden, R.: The economics of rights, co-operation and welfare. Basil Blackell, Oxford, UK
(1986)

Traulsen, A., Nowak, M., Pacheco, J.: Stochastic dynamics of invasion and fixation. Phys Rev
E Stat Nonlin Soft Matter Phys 74(1 Pt 1), 011,909- (2006)

Traulsen, A., Nowak, M., Pacheco, J.: Stochastic payoff evaluation increases the temperature
of selection. J Theor Biol 244(2), 349-56 (2007)

Traulsen, A., Nowak, M., Pacheco, J.M.: Pairwise comparison and selection temperature in
evolutionary game dynamics. Journal of Theoretical Biology 246, 522-529 (2007)

Weir, P.: Witness (1985)



