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Abstract. Fairness plays a determinant role in human decisions and
definitely shapes social preferences. This is evident when groups of indi-
viduals need to divide a given resource. Notwithstanding, computational
models seeking to capture the origins and effects of human fairness often
assume the simpler case of two person interactions. Here we study a
multiplayer extension of the well-known Ultimatum Game. This game
allows us to study fair behaviors in a group setting: a proposal is made
to a group of Responders and the overall acceptance depends on reaching
a minimum number of individual acceptances. In order to capture the
effects of different group environments on the human propensity to be
fair, we model a population of learning agents interacting through the
multiplayer ultimatum game. We show that, contrarily to what would
happen with fully rational agents, learning agents coordinate their behav-
ior into different strategies, depending on factors such as the minimum
number of accepting Responders (to achieve group acceptance) or the
group size. Overall, our simulations show that stringent group criteria
leverage fairer proposals. We find these conclusions robust to (i) asyn-
chronous and synchronous strategy updates, (ii) initially biased agents,
(iii) different group payoff division paradigms and (iv) a wide range of
error and forgetting rates.

1 Introduction

Fairness plays a central role in human decision-making and it often directs the
actions of people towards unexpected outcomes. This fact has puzzled academics
from multiple fields and the subject comprises a fertile ground of multidiscipli-
nary research [9,10]. A neat way to verify that humans often give up their own
material gains in order to achieve fair outcomes is achieved by observing how
people play a very simple game named the Ultimatum Game (UG) [13]. In
this game, two players interact with each other. The Proposer is endowed with
some resource and has to propose a division with the Responder. After that, the
Responder has to state her acceptance or rejection. If the proposal is rejected,
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none of the players earn anything. If the proposal is accepted, they will divide the
resource as it was proposed. In the context of UG, the outcome of any accepted
proposal stands as a social optimum (in the Pareto sense, i.e., no other player
can improve her payoff without damaging the payoff of others) however, only
the egalitarian division, in which both the Proposer and the Responder earn a
similar reward, is considered a fair result.

A first approach, attempting to predict the behavior of people in this game,
relies on the assumption that each player is a rational agent that seeks to uncon-
ditionally maximize the rewards. In this case, it is easy to notice that the Respon-
der should always accept any offer; wherefore, the Proposer should never fear
to have a proposal rejected and should always propose the minimum possible.
This indeed constitutes the sub-game perfect equilibrium of the UG [27]. A vast
number of works, however, report experiments with people in which the rational
sub-game prediction is not played and fair outcomes are verified [13,26,35,46].
Humans tend to reject low proposals and manage to offer high/fair divisions.
Offers are higher than expected even in the so-called Dictator games, where
the Responders do not have the opportunity to reject and proposals are always
accepted [10,16].

If one intends to model, explain and tentatively predict the behavior of people
in this game, new mathematical and computational tools have to be employed,
other than the game theoretical sub-game perfect equilibrium. For instance,
by relaxing the rational assumption made about human decision making and
by simply undertaking that strategies are adopted or renounced by individual
[11,22,43] or social learning [31,33,41], various mechanisms can be tested and
different conclusions can be obtained. In the second case, assuming that agents
co-habit a population and adopt strategies with a probability that grows with
the success those strategies are perceived to consent, the dynamics of strategy
adoption interestingly resemble a process of gene replication and the evolving
behavior of agents can be modeled by tools from Evolutionary Game Theory
(EGT) [50]. Interestingly, EGT can also be used to study individual learning
dynamics [1].

UG has been studied in the context of EGT and it has been shown that
when Proposers collect pieces of information about opponents’ previous actions,
it is worth for the Responders to cultivate a fierce bargainer reputation [25].
This explains the long-term benefits of Responders that acquire an intransigent
image by rejecting unfair offers. Other models attribute the evolution of fairness
to repeated interactions [49], to empathy [29] or even simply to environmen-
tal noise and stochasticity [32,37]. A slightly different approach suggests that
fair Proposers and Responders may emerge due to the topological arrangement
of their network of contacts: if individuals are arranged in lattices [30,45] or
complex networks [17,42] clusters of fairness may emerge.

While the UG is ubiquitous in real-life encounters, there is a wide range of
human interactions that a pairwise interaction model does not enclose. It is per-
fectly straightforward to realize that also UG instances take place in groups, with
proposals being made to assemblies [38]. Take the case of pervasive democratic
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institutions, economic and climate summits, markets, auctions, or the ancestral
activities of proposing divisions regarding the loot of group hunts and fisheries.
All those examples go beyond a pairwise interaction. More specifically, the rela-
tion of groups and the possibility of fair allocations is a topic utterly relevant
in the context of group buying [19,20], collective bargaining of work contracts
or coalition policy making [14] and indeed, there is a growing interest in doing
experiments with multiplayer versions of fairness games [3,6,7,9,12,23,39]. A
simple extension of UG may turn it adequate to study a wide variety of ubiq-
uitous group encounters. This extension, the Multiplayer UG (MUG), allows
to study the traditional UG in a context where proposals are made to groups
that should decide about its acceptance or rejection [38]. In the context of this
game, some questions need to be addressed: What is the role of the specific group
environment on people’s behavior? What is the impact of group acceptance rules
(i.e., the minimum number of accepting Responders to obtain group acceptance)
on individual offers? What is the role of group size on fairness?

If one assumes that agents always opt for the payoff maximizing strategy, the
previous questions have trivial answers: proposals in MUG are accepted regard-
less of the group particularities and any effect of group size or group acceptance
rules in the preferred people’s behavior should be neglected. However, aban-
doning this strong rationality assumption, and acknowledging that unexpected
behaviors often result from an adaptive process of evolution and learning, turns
plausible that different group environments can shape decision making and nur-
ture fair outcomes. As mentioned before, the use of multiagent learning tech-
niques can, for that end, unveil important characteristics of human interactions
that are neglected by typical equilibrium analysis. Here we seek to analyze the
role of different group environments on the emergence of fair outcomes, by com-
bining MUG with agents that adapt their behavior through reinforcement learn-
ing [44]. We implement and test with the well-known Roth-Erev reinforcement
learning algorithm [35]. We show that group size and different group acceptance
rules impact, in a nontrivially manner, the learned strategies and the associated
fairness: increasing the minimum number of accepting Responders to achieve
group acceptance has the effect of increasing the offered values and consequently
fairness; secondly, the effect of group size strongly depends on the group accep-
tation threshold.

For simplicity and readability purposes, in Table 1 we provide a list of the
nomenclature used through this document. In Sect. 2, we present the MUG [38]
and we review the equilibrium notions of classical game theory, namely, the sub-
game perfection. In Sect. 3 we present the Roth-Erev learning model that we use
thorough this work. After that, in Sect. 4, we present the results showing that,
within a population of adaptive agents, group environment (group acceptance
rules and group size) indeed plays a fundamental role in the employed strategies.
In Sect. 5 we discuss the obtained results and provide a set of concluding remarks.
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Table 1. Glossary

Symbol Meaning

p Offer by Proposer
q Acceptance threshold of Responder
ΠP (pi, q−i) Payoff earned by a Proposer
ΠR(pj , q−j) Payoff earned by a Responder
Π(pi, qi, p−i, q−i) Payoff being Proposer and Responder
api,q−i

Group acceptance flag
Q(t) Propensity matrix at time t

λ Forgetting rate
ε Local experimentation
ρki(t) Probability that k uses strategy i

p̄, q̄ Average p, q population-wide
ip,q Integer representation of strategy (p, q)
R Number of runs
Z Population size
N Group size
M Group acceptance rule
T Number of time steps
R Number of runs

2 Multiplayer Ultimatum Game

Often people incur in interactions that are fundamentally rooted in proposals
made to groups. These proposals can naturally be accepted or rejected, depend-
ing on the subsequent bargaining and group acceptance rules. The outcome of
this interaction can favor unequally each part involved and is thereby likely that
concerns about fairness puzzle each player mood. The role played by the group
in this interaction is overlooked by the traditional two-person UG. Thereby, here
we present and analyze the Multiplayer Ultimatum Game (MUG) which allows
us to test the effect of different group environments on the behaviors adopted
by people and the associated fairness levels [38].

In the UG, we can assume that the strategy of the Proposer is the fraction
of resource offered to the Responder (p) and the strategy of the Responder is
the personal threshold (q) used to decide about acceptance or rejection [25,30].
Only whenever p ≥ q the proposal is accepted. Considering that the amount
being divided sums to 1, an accepted proposal of p endows the Proposer with
1−p and the Responder with p. If the proposal is rejected, none of the individuals
earn anything. The UG can now be extended to a N-person game if we account
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for the existence of a group composed by N − 1 Responders [36,38]. The group
decision making can be arbitrarily complex yet, we simplify this process by
assuming that each of the N − 1 Responders accepts or rejects the proposal and
the overall group acceptance depends on a group acceptance rule: if the number
of acceptances equals or exceeds a minimum number of accepting Responders,
M , the proposal is accepted by the group. In this case, the Proposer keeps
what she did not offer (1− p) and the offer is divided by the Responders (in two
possible ways, as detailed next); otherwise, if the number of acceptances remains
below M , the proposal is rejected by the group and no one earns anything. The
accepted proposal can be (i) evenly divided by all the Responders or (ii) only
divided by the accepting Responders.

The payoff function describing the gains of a Proposer i, with strategy pi,
facing a group of Responders with strategies q−i = {q1, ..., qj , ..., qN−1}, j �= i
reads as

ΠP (pi, q−i) = (1 − pi)api,q−i
(1)

Where api,q−i
summarizes the group acceptance of the proposal made by

agent i (pi), standing as

api,q−i
=

{
1, if

∑
qj∈q−i

Θ(pi − qj) ≥ M.

0, otherwise.
(2)

Θ(x) is the Heaviside unit step function, having value 1 whenever x ≥ 0 and 0
otherwise. This way, Θ(pi − qj) = 1 if agent j accepts agent’s i proposal and∑

qj∈q−i
Θ(pi − qj) is the number of Responders (within those using strategies

q−i = {q1, ..., qj , ..., qN−1}, j �= i) accepting proposal pi.
Similarly, the payoff function describing the gains of a Responder belonging

to a group with a strategy profile q−j = {q1, ..., qk, qi, ..., qN−1}, k �= j, listening
to a Proposer j with strategy pj , is, in the case of proposals evenly divided by
all, given by

ΠR(pj , q−j) =
pj

N − 1
apj ,q−j

. (3)

In the case of proposals divided by the accepting Responders, the payoff of
a Responder (with strategy qi) is given by

ΠR(pj , q−j) =
pjΘ(pj − qi)apj ,q−j∑

qk∈q−j
Θ(pj − qk)

(4)

This equation implies that a Responder only earns something if both she and
the group accept that proposal. In turn, Eq. (3) implies that only the group has
to accept a proposal, for any Responder to earn something.

We can assume that these games occur in groups where each individual acts
once as Proposer and N − 1 times as Responder. This way, the overall payoff
of an individual with strategy (pi, qi), playing in a group with strategy profile
(p−i, q−i), is given by

Π(pi, qi, p−i, q−i) = ΠP (pi, q−i) +
∑

pj∈p−i

ΠR(pj , q−i) (5)
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The interesting values of M range between 1 and N −1. If M = 0, no Respon-
ders are needed to accept a proposal and so, all proposals would be accepted.
With M > N − 1 all proposals are rejected irrespectively of the strategies used
by the players.

2.1 Sub-game Perfect Equilibrium

In order to derive the sub-game perfect equilibrium of MUG, let us introduce
some canonical notation. A game given in a sequential form has a set of stages
in which a specific player (chosen by a player function) should act. A history
stands as any possible sequence of actions, given the turns assigned by the player
function. Roughly speaking, a terminal history is a sequence of actions that go
from the beginning of the game until an end, after which there are no actions
to follow. Each terminal history will prescribe different outcomes to the players
involved, given a specific payoff structure that fully translates the preferences
of the individuals. This way, a sub-game is composed by the set of all possible
histories that may follow a given non-terminal history. A strategy profile is a sub-
game perfect equilibrium if it also the Nash equilibrium of every sub-game [27].

Let us turn to the specific example of MUG to clarify this idea. In this game,
the Proposer does the first move and the Responders should, secondly, state
acceptance or rejection. The game has two stages and any terminal history is
composed by sets of two actions, one taken by a single individual (Proposer,
with possibility to suggest any division of the resource) and the second by the
group (acceptance or rejection).

Picture the scenario in which groups consist of 5 players, where one is the
Proposer, the other 4 are the Responders and M = 4 (different M would
lead to the same conclusions). Let us evaluate two possible strategy profiles:
s1 = (0.8, 0.8, 0.8, 0.8, 0.8) and s2 = (μ, 0, 0, 0, 0), where the first value is the
offer by the Proposer and the remaining 4 are the acceptance thresholds by the
Responders. Both strategy profiles are Nash Equilibria of the whole game. In the
first case, the Proposer does not have interest in deviating from 0.8: if she lowers
this value, the proposal will be rejected and thus she will earn 0; if she increases
the offer, she will keep less to herself. The same happens with the Responders: if
they increase the threshold, they will earn 0 instead of 0.2, and if they decrease
it, nothing happens (non-strict equilibrium). The exact same reasoning can be
made for s2, assuming that μ/(N − 1) is the smallest possible division of the
resource.

Regarding sub-game perfection, the conclusions are different. Assume the
history in which the Proposer has chosen to offer μ (let us call the sub-game after
this history, in which only one move is needed to end the game, h). In this case,
the payoff yielded by s1 is (0, 0, 0, 0, 0) (every Responder rejects a proposal of μ)
and the payoff yielded by s2 is (1−μ, μ/(N −1), μ/(N −1), μ/(N −1), μ/(N −1)).
So it pays for the Responders to choose s2 instead of s1, which means that
s1 is not a Nash Equilibrium of the sub-game h. Indeed, while any strategy
profile in the form s = (p, p, p, p, p), μ < p ≤ 1 is a Nash Equilibrium of MUG,
only s∗ = (μ, 0, 0, 0, 0) is the sub-game perfect equilibrium. As described in the
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introductory section, a similar conclusion, yet simpler and more intuitive, could
be reached through backward induction.

3 Learning Model

The use of multiagent learning algorithms can unveil fundamental properties
of human interactions that are overlooked if one would assume that individuals
always behave following fully rational behaviors [8,11,22,35,43]. Particularly, the
Roth-Erev algorithm was used with remarkable success in modeling the process
of human learning when playing well-known interaction paradigms such as the
Ultimatum Game [35]. We use the Roth-Erev algorithm to analyze the outcome
of a population with learning agents playing MUG in groups of size N . In this
algorithm, at each time-step t, each agent k is defined by a propensity vector
Qk(t). Over time, this vector is updated given the payoff gathered after each
play. Successfully employed actions will grant larger payoffs that, when added
to the corresponding propensity value, will increase the probability of repeating
that strategy in the future (as will be made clear below). We consider that games
take place within a population with Z (Z > N) adaptive agents. Agents earn
payoff following an anonymous random matching model [11], i.e., we sample
random groups without any kind of preferential arrangement or reciprocation
mechanism. We consider MUG with discretized strategies. We round the possi-
ble values of p (proposed offers) and q (individual threshold of acceptance) to
the closest multiple of 1/D, where D measures the granularity of the strategy
space considered. We map each pair of decimal values p and q into an integer
representation, thereafter ip,q is the integer representation of strategy (p, q) and
pi (or qi) designates the p (q) value corresponding to the strategy with integer
representation i.

The core of the learning algorithm takes place in the update of the propensity
vector of each agent, Q(t + 1), after a play at time-step t. Denoting the set of
possible actions by A, ai ∈ A : ai = {pi, qi}, and the population size by Z, the
propensity matrix, Q(t) ∈ R

Z×|A|
+ , is updated following the base rule

Qki(t + 1) =

{
Qki(t) + Π(pi, qi, p−i, q−i) if k played i

Qki(t) otherwise
(6)

The above update can be enriched with human learning features: forgetting
rate (λ, 0 ≤ λ ≤ 1) and local experimentation error, (ε, 0 ≤ ε ≤ 1) [35], leading
to an update rule slightly improved,

Qki(t + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qki(t)λ̄ + Π(pi, qi, p−i, q−i)(1 − ε) k played i

Qki(t)λ̄ + Π(pi, qi, p−i, q−i) ε
4 k pl. ip ± 1

Qki(t)λ̄ + Π(pi, qi, p−i, q−i) ε
4 k pl. iq ± 1

Qki(t)λ̄ otherwise

(7)

where λ̄ = 1 − λ and ip ± 1 (iq ± 1) corresponds to the index of the p (q) values
of the strategies adjacent to pi (qi), naturally depending on the discretization
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chosen. The introduction of local experimentation errors is convenient as they
prevent the probability of playing the less used strategies (however close to the
used ones) from going to 0. Moreover, those errors may introduce the sponta-
neous trial of novel strategies, a feature that is both human-like and showed
to improve the performance of autonomous agents [40]. The forgetting rate is
convenient to inhibit the entries of Q from growing without bound: when the
propensities reach a certain value, the magnitude of the values forgotten, Qki(t)λ,
approach those of the payoffs being added, Π(pi, qi, p−i, q−i).

When an agent is called to pick an action, she will do so following the prob-
ability distribution dictated by the normalization of her propensity vector. The
probability that individual k picks the strategy i at time t is given by

ρki(t) =
Qki(t)∑
n Qni(t)

(8)

The initial values of propensity, Q(0), have a special role in the convergence to
a given propensity vector and on the exploration versus exploitation dilemma.
If the norm of propensity vectors in Q(0) is high, the initial payoffs obtained
will have a low impact on the probability distribution. Oppositely, if the norm of
propensity vectors in Q(0) is small, the initial payoffs will have a big impact on
the probability of choosing the corresponding strategy again. Convergence will
be faster if the values in Q(0) are low, yet in this case agents will not initially
explore a wide variety of strategies. Here we consider three variants of initially
attributed values to Q(0): (i) random initial propensity, where each entry Qki(0)
assumes real values randomly sampled (uniformly) from the interval [0, Q(0)max];
(ii) propensity values initially high on the strategy p = q = 0 – specifically, we
attribute a random value between 0 and 1 to the propensities corresponding to
the strategies p �= 0, q �= 0 and we attribute the value Q(0)max to the propensity
corresponding to the strategy p = q = 0; (iii) values of propensity initially high
on the strategy p = q = 1 and low on strategies p �= 1, q �= 1.

All together, the individual learning algorithm can be intuitively perceived:
when individual k uses strategy i she will reinforce the use of that strategy
provided the gains that she obtained; higher gains will increase to a higher
extent the probability of using that strategy in the future. The past use of the
remaining strategies, and the obtained feedbacks, will be forgotten over time;
similar strategies to the one employed (which in the case of MUG are just the
adjacent values of proposal and acceptance threshold) will also be reinforced,
yet to a lower extent. This learning algorithm is rather popular, providing a
canonical method of reinforcement learning that was successfully applied in the
past to fit the way that people learn to play social dilemmas [8,35]. It is note-
worthy that two important properties of human learning are captured by this
model: the Law of Effect [47] and the Power Law of Practice [24]. The first poses
that humans (and animals) tend to reinforce the use of previously successfully
employed strategies; the Power Law of Practice states that the learning curve
of a given task by a human is initially steep and, over time, gets flat. Indeed,
by using the Roth-Erev algorithm, larger payoffs reinforce to a larger extent
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Algorithm 1. Roth-Erev reinforcement learning algorithm in an adap-

tive population and considering synchronous update of propensities.

Q(0) ←initialization;

for t ← 1 to T, total number of time-steps do

tmp ← {0, ..., 0} /* keeps the temporary payoffs of the

current time step to allow for synchronous update of

propensities */;

for k ← 1 to Z do
1. pick random group with individual k ;

2. collect strategies (Eq. 8);

3. calculate payoff of k (Eq. 5);

4. update tmp[k] with payoff obtained ;
update Q(t) given Q(t − 1) and tmp (Eq. 7);

save p̄ (Eq. 9);

save q̄ (Eq. 9);

the usage of a given strategy (alongside preventing the usage of the remaining
strategies) and, following Eq. (8), payoffs have a larger relative impact on the
probability of picking a strategy at the beginning of the learning process, when
Qki(t) values are lower.

Algorithm 2. Roth-Erev reinforcement learning algorithm in an adap-

tive population and considering asynchronous update of propensities.

Q(0) ←initialization;

for t ← 1 to T, total number of time-steps do

for i ← 1 to Z do
1. pick random individual k and random group with k ;

2. collect strategies (Eq. 8);

3. calculate payoff of k (Eq. 5);

4. update Qk with the payoff obtained ;
save p̄ (Eq. 9);

save q̄ (Eq. 9);
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The remaining algorithm is summarized in Algorithms 1 and 2. In
Algorithm 1 we detail the synchronous version of the algorithm. In this case,
we guarantee that during each time step every agent has the opportunity to
update her propensity values. Moreover, during a given time step, all agents
play and the obtained payoff is kept in a temporary registry, so that all agents
update their propensities at once, after a time step elapses.

In Algorithm 2 we summarize the asynchronous version of the propensity
updates. In this case, Z (the population size) agents are randomly selected to
update their propensity values during one time step, without any guarantee
that all agents are given this opportunity and that no agents are repeatedly
selected. Additionally, when an agent plays, the corresponding propensity value
is immediately updated, precluding any kind of synchronism in the propensity
update process.

We keep track of the average values of p and q in the population, designating
them by p̄ and q̄. Provided a propensity matrix, they are calculated as

p̄ =
1
Z

∑
1<k<Z

∑
1<i<|A|

ρkipi

q̄ =
1
Z

∑
1<k<Z

∑
1<i<|A|

ρkiqi (9)

In the next section, we present and discuss the results stemming from our
experiments.

4 Results

Through the simulation of the multiagent system described in the previous
section, we first show that different group acceptance rules have a considerable
impact on the average values of offers (p) and acceptance thresholds (q) learned
by the population. As the time-series in Fig. 1 (left column) show, when MUG
takes place in groups of size N = 8 and for M = 1 (top), M = 4 (middle) and
M = 7 (bottom), agents learn the strategies that allow them to maintain high
acceptance rates and high average payoffs. Notwithstanding, the offered values
are higher and fairer if M increases. An average p of 0.2 (M = 1) endows Pro-
posers with an average payoff of 0.8, while each Responder keeps 0.2. Oppositely,
an average value of p close to 0.7 (M = 7) provides the more equalitarian out-
come of endowing Proposers with 0.3 and Responders with 0.7. Recall that the
sub-game perfect equilibrium always predicts that Proposers would keep almost
all the sum and Responders would earn something close 0.

In Fig. 1 we additionally portray the variance of strategies at an individual
(middle column) and population level (right column). Initially, propensity values
are attributed randomly, sampled from a uniform distribution from 0 to Q(0)max.
This way, the variance of propensity is initially high, at an agent level. However,
the average values of p and q used by each agent are approximately 0.5 for
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Fig. 1. Left column: time series reporting the evolution of average strategies (p̄ and
q̄), average payoff population-wide (payoff ) and proposals rejection rate (reject%).
Each plot depicts the average over 100 runs (the corresponding standard deviation,
often negligible, is represented by a background shadow), each starting with a random
propensity matrix where each entry is sampled from a uniform distribution over the
interval [0, Q(0)max]. For group size N = 8 and for the thresholds M = 1, M = 4
and M = 7, the rejection rate converges to a value near the minimum, thereby, the
average payoff in the population approximates the maximum possible. The average
strategy values do not inform us about the predictability of agents’ actions (the spread
of the distribution of individual propensity values) neither about the diversity level of
strategies occurring at a population level (spread of average strategies considering all
agents), thereby, we present the variance of propensity at an individual (middle column)
and population (right column) level. We observe that, as time steps go by, all agents
learn to always use (approximately) the same proposal values (p), an evidence that
stems from the low average variance of propensities both within each agent and across
all the population. Contrarily, the variance of the propensity values of q remain high.
This variance is considerable lower when M is high, reflecting the larger pressure that
is exerted upon q. In these specific plots, we assume synchronous propensity updates
and offers divided by all the Responders. Other parameters: population size Z = 100,
granularity D = 20, forgetting rate λ = 0.01, local experimentation rate ε = 0.01, total
number of time-steps T = 20000 Q(0)max = 20.
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everyone, which results in an initially low variance of average strategies, at a
population level. As time goes by (higher values of t), all the agents adapt in
order to always use the same values of p, resulting in a low variance of propensity
both at agent and population level. Oppositely, different agents learn to use
different ranges of q. This is depicted by the high variance of propensity both at
an individual and population level: in what concerns q, agents are unpredictable
and populations are diverse.

We can have a better intuition for the evolving distribution of strategies
within a population if we observe a snapshot, for one specific run, of the propen-
sity distribution over the space of possible p and q values. The corresponding
results are pictured in Figs. 2 (M = 1), 3 (M = 4) and 4 (M = 7) for time-
steps t = 200, t = 500, t = 1000, t = 3000, t = 19000. Each small square
corresponds to a pair (p, q) and a darker square means that more agents have
a propensity vector with a high value in that position. Figures 2, 3 and 4 show
that, over time, agents learn to use a p value that grows with M . Concerning
q, the learned values have a sizeable variance within the same population. This
variance decreases with M , an effect already visible in Fig. 1. The reasoning for
this result is straightforward: as M increases, a proposal is only accepted if more
Responders accept it. In the limiting case of M = N − 1, all Responders have to
accept an offer in order for it to be accepted by the group, thereby, the pressure
for having low acceptance thresholds (q) is high. When M is low, a lot of q values
in the group of Responders turn to be irrelevant. In this case, the pressure for q
values to converge to confined domain is softened.

So far we considered that propensity values are initially attributed at random.
This naturally casts doubt on whether populations of initially unfair agents are
also able to learn to be fair and adapt their behaviour given different values of
M . This way, we explicitly consider the effect of initially biased agents. At t = 0
we input in each agent a propensity vector that induces them to use a specific
strategy with high probability (darker squares in the bottom-left (middle panel)
or top-right (bottom panel) corners of each figure at t = 200). We consider the
two extreme cases of high and low p, q values. In the middle panels of Figs. 2,
3 and 4, a lot of propensity is initially placed in the strategies p = q = 0, for
all agents (extremely unfair agents). In the bottom panels, a lot of propensity
is initially placed in the strategies p = q = 1 (extremely altruistic agents).
We show that, despite this initial bias, agents learn to use approximately the
same strategies, in the long run. Moreover, we conclude again that the learned
strategies strongly depend on M .

Indeed, if we systematically increase M , the proposed values rise concomi-
tantly. In Fig. 5 we observe this effect in four different conditions: (i) synchro-
nous updates of propensities (Algorithm1) and payoff divided by all Responders
(Eq. 3); (ii) synchronous updates of propensities and payoff divided by accepting
Responders (Eq. 4); (iii) asynchronous updates of propensities (Algorithm2) and
payoff divided by all Responders; (iv) asynchronous updates of propensities and
payoff divided by accepting Responders. Interestingly, when the payoff is only
divided by the accepting Responders, the average values of q and p decrease.
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Fig. 2. Snapshots of the population composition regarding the average values of p and
q to be played given Q(t). Each plot represents the space of all possible combination
of p and q, assuming that D = 20 and thereby, p and q rounded to the closest multiple
of 1/20. We represent the state of the population for five distinct time-steps (from left
to right: t = 200, t = 500, t = 1000, t = 3000, t = 19000) and given three different
Q(0) conditions: on top, initial propensity values uniformly distributed; on the mid-
dle, initial propensity Qk0(0) = 50 and Qk,i�=0(0) = U(0, 1), where U = (0, 1) is a
random real sampled uniformly from the interval [0, 1]; on bottom, initial propensity
Qk(D+1)2−1(0) = 50 and Qk,i�=(D+1)2−1(0) = U(0, 1). Irrespectively of the initial con-
ditions, for M = 1 agents learn to use low values of p. Each square within the 2D-plots
represents a specific combination of (p, q). If the square is darker it means that more
individuals use, with high probability, a strategy corresponding to that location. Other
parameters: group size N = 8, group acceptance threshold M = 1, initial propensities
maximum Q(0)max = 50, population size Z = 100, granularity D = 20, forgetting rate
λ = 0.01, local experimentation rate ε = 0.01, total number of time-steps T = 20000.

This result is plausible because, when the number of accepting Responders in a
group stands above M and the offer is divided by all the Responders, only the q
of those that accepted the proposal has indeed an impact in the obtained payoff;
all the agents with a high q receive the same payoff as the accepting agents with
low q. However, when the payoff is divided by solely the accepting Responders
(low q), the agents with a high q that individually reject a proposal can be
impaired even if the proposal is accepted by the group. This way, the pressure
for q to decrease is higher in the condition where proposals are only divided by
the accepting Responders. Alongside, the values of p also decrease. Consistently
with this hypothesis, when M is higher the difference in both payoff division
paradigms is alleviated. On the other hand, there is no significant difference in
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Fig. 3. Snapshots of the population composition regarding the average values of p and
q to be played given Q(t). For an interpretation of this Fig., please see the caption of
Fig. 2. Other parameters: group size N = 8 and group acceptance threshold M = 4.
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Fig. 4. Snapshots of the population composition regarding the average values of p and
q to be played given Q(t). For an interpretation of this Fig., please see the caption of
Fig. 2. Other parameters: group size N = 8 and group acceptance threshold M = 7.
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Fig. 5. The average values of p and q for group size N = 10 with M assuming all
possible non-trivial values 1 ≤ M ≤ N − 1. Each point in the plot corresponds to a
time and ensemble average: (i) time average over the last half of the time-steps, i.e.,
we wait for a transient time for propensity values to stabilise and (ii) we take the
average of 100 runs, each one starting from a random Q(0) propensity matrix. The
variance over different runs is negligible. On the left, we represent the average values of
proposal and on the right we depict the average threshold acceptance values. In each
case, we consider all the combinations of (i) asynchronous or synchronous propensity
updates with (ii) payoff divided by all the Responders or payoff only divided by the
accepting Responders. Other parameters: population size Z = 100, granularity D = 20,
forgetting rate λ = 0.01, local experimentation rate ε = 0.01, total number of time-
steps T = 10000, number of runs R = 100, initial propensities maximum Q(0)max = 20.

Fig. 6. Average values of p and q for different combinations of λ (forgetting rate) and ε
(local experimentation error). In this case, we assume synchronous propensity updates
and offers divided by all the Responders. For all the tested combinations, we always
obtain a higher value of p whenever M increases and all other parameters stand fixed.
Other parameters: group size N = 8, population size Z = 100, granularity D = 20,
total number of time-steps T = 10000, number of runs R = 100, initial propensities
maximum Q(0)max = 20.

the learned strategies when considering asynchronous or synchronous propensity
updates.

It is noteworthy that the relation between high M and fair proposals remains
valid for a wide range of combinations of λ (forgetting rate) and ε (local
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Fig. 7. Average values of p and q for different combinations of group sizes, N (2 to 32),
and group acceptance rules, M (left panel: M = 1 i.e., just a single individual accep-
tance to render a proposal accepted; right panel: M = N − 1, unanimity of individual
acceptances to overall accept a proposal). In this case, we assume synchronous propen-
sity updates and offers divided by all the Responders. Other parameters: population
size Z = 100, granularity D = 20, forgetting rate λ = 0.01, local experimentation
error ε = 0.01, total number of time-steps T = 10000, number of runs R = 100, initial
propensities maximum Q(0)max = 20.

experimentation error) (Fig. 6). We additionally tested for N = 7, M = 1, 3, 6
and Z = 20, 30, 50, 200, 300, 500 and verified that the conclusions regarding the
effect of M remain valid for this whole range of population sizes.

Finally, we highlight the effect of group size (N) on the average value of
proposals made (p̄) and proposals willing to be accepted (q̄). As Fig. 7 depicts,
larger groups induce individuals to rise their average acceptance threshold. As
the group of Responders grows and the offers have to be divided between more
individuals, the pressure to learn optimal low q values is alleviated. This way,
the values of q should increase, on average, approaching the 0.5 barrier that
would be predicted if they behaved erratically. Differently, the proposed values
exhibit a dependence on the group size that is conditioned on M . For mild group
acceptance criteria (e.g. M = 1), having a big group of Responders is a synonym
of having a proposal easily accepted. In these circumstances, Proposers tend to
offer less without risking having their proposals rejected, keeping this way more
for themselves and exploiting the Responders. Oppositely, when groups agree
upon stricter acceptance rules (e.g., M = 7), having a big group of Responders
means that more people need to be convinced of the advantages of a proposal.
This way, Proposers have to adapt, increase the offered values and sacrifice their
share in order to have their proposals accepted.

5 Discussion and Conclusion

In this work we model an adaptive population with agents interacting through
MUG. Agents learn over time following the Roth-Erev reinforcement learning
algorithm. This individual learning algorithm was shown to mimic quite well
the learning process of humans while playing social dilemmas [8,35]. Indeed, our
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main goal is to capture, in a computational model, the role of group acceptance
rules and the own group sizes on human behavior. While the role of different
group environments is overlooked by an approach that takes all agents as being
fully rational, we show that, in the context of learning agents, some particularities
of the group setting importantly change the learned behaviors: increasing the
minimum number of accepting Responders to obtain group acceptance has the
effect of increasing the offered values; the effect of group size depends on the
group decision rule in a way that big groups combined with soft group criteria
are a fertile ground for selfish Proposers to thrive and, oppositely, big groups
that require a large number of Responders to accept a proposal induce Proposers
to offer more.

The individual learning model that we implement is close to a trial and error
mechanism that individuals may use to successively adapt to the environment,
given the feedback provided by their own actions. A different approach imple-
ments a system of social learning [38] in which individuals learn by observing
the strategies of others and accordingly imitate the strategies perceived as best
[31,33,41]. These two learning paradigms (individual and social) can lead to very
different outcomes concerning the learned strategies and the long-term behaviour
of the agents [4,48]. Interestingly, our results are in line with some of the results
obtained in the context of evolutionary game theory and social learning [38].
It is remarkable, however, that an individual learning approach does not rely
on information about others’ complete strategy set and performances. Agents’
learning only requires knowledge about the used strategy and the received pay-
off. This way, the individual learning method that we employ is suitable to model
MUG situations where, reasonably, others’ strategies are unknown and the only
feedback obtained is the overall group acceptance or rejection.

As stated, we simulate a population of learning agents as a proxy to better
understand human behaviour. In AI, algorithms of reinforcement learning are
typically implemented in order to equip artificial agents with autonomy and opti-
mality, characteristics often attributed to human intelligence. This way, human
behavior is taken as an inspiration to design artificial agents. This work (following
others [4,8,22,35,43]) intends to close the loop by experimenting with artificial
agents new interactions and behaviors that tentatively allow to gain knowledge
about the way that humans act: the emergent behavior of artificial agents is
taken as an inspiration to understand human behavior. Interestingly, by telling
us something about emergent human behavior, our results can again be used
to aid the design of artificial agents that are both efficient and believable when
used in human-agent interactions [2,5]. Take the example of automatic negoti-
ation [18,21,34]. What would be the requirements of artificial agents designed
to negotiate with a human in an environment that is surely dynamic? Should
they behave assuming human rationality and predicting sub-game perfect equi-
librium (see Sect. 2.1)? Should they act accordingly with the behaviors that
emerge after a learning process? Here we clearly show that the proposal and
acceptance threshold of those agents should be implemented as a function of
the specific group environment where agents are going to act. These conclusions
could hardly be obtained after assuming agents rationality.
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Finally, a note on further applications of the game we test with. As Hamil-
ton states, “The theory of many person games may seem to stand to that of
two-person games in the relation of sea-sickness to a headache” [15,28]. Indeed,
here we see that a multiplayer version of the Ultimatum Game, while still rea-
sonably simple and general, brings attached a set parameters whose effect is
certainly not trivial to understand [36,38]. The interaction paradigm that we
consider is prevalent in numerous daily situations and human activities, thereby,
the study of MUG using different modeling tools and assumptions is both a chal-
lenge and opportunity to address stimulating open questions. For instance, how
will the group size affect the social pressure on the rejecting Responders? How
to manage individual reputations if only the general group verdict is known,
rather than individual decisions? What would change if Proposers were allowed
to target offers to specific Responders and how would M impact that behavior?
How should agents be selected to be Proposers from within a group, given their
previous actions? We hope that the adaptive learning agents and multiagent
systems community feels tempted to address those (and many other) questions
that MUG instigates.
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