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The sustainable governance of Global Risky Commons (GRC)—global commons in the presence of a 
sizable risk of overall failure—is ubiquitous and requires a global solution. A prominent example is 
the mitigation of the adverse effects of global warming. In this context, the Collective Risk Dilemma 
(CRD) provides a convenient baseline model which captures many important features associated 
with GRC type problems by formulating them as problems of cooperation. Here we make use of the 
CRD to develop, for the first time, a bottom-up institutional governance framework of GRC. We find 
that the endogenous creation of local institutions that require a minimum consensus amongst group 
members—who, in turn, decide the nature of the institution (reward/punishment) via an electoral 
process—leads to higher overall cooperation than previously proposed designs, especially at low risk, 
proving that carrots and sticks implemented through local voting processes are more powerful than 
other designs. The stochastic evolutionary game theoretical model framework developed here further 
allows us to directly compare our results with those stemming from previous models of institutional 
governance. The model and the methods employed here are relevant and general enough to be applied 
to a variety of contemporary interdisciplinary problems.
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Global Warming, considered by the United Nations (UN) as one of the most important global problems we face1, 
is a typical example of a GRC whose solution requires worldwide cooperation. The Collective Risk Dilemma 
(CRD) models theoretically this GRC as a risky, threshold public goods game. It has been widely employed 
in recent years2–18, and represents a theoretical adaptation of the original design employed in behavioral 
experiments19–21. Cooperation in the CRD means paying a cost to mitigate, whose benefits may or may not 
become available to all. Thus, the temptation to free-ride on the benefits produced by others at their own expense 
is an inescapable component of the model. However, in order to secure the provision of the public good, a 
minimum number of Cooperators is needed, without whom every member of the group is at risk of losing all 
they have (for details, see Methods).

Previous work7 making use of the CRD indicates that sanctioning institutions help to solve the Global 
Problem provided they are endogenously created at a Local scale, whereas global institutions (such as the UN) do 
not change the qualitative behavior of the CRD as a function of risk compared to a scenario where no institutions 
are at work (black solid line in Fig. 3), supporting the widely repeated motto “think globally, act locally”.

Furthermore, even though some global agreements, such as the Montreal Protocol22 and the Kigali 
Amendment to the Montreal Protocol23, look promising in tackling global dilemmas related to the production 
of harmful gases, an all-encompassing agreement addressing Global Warming, reached at a global scale, would 
still require the implementation of solutions adapted to particular specificities and challenges at a local scale, 
calling for a polycentric approach to best deal with each particular regional challenge24. Consequently, we shall 
concentrate, in the following, on local, endogenously created, institutions.

The creation of institutions poses another costly public good, leading to a second-order social dilemma that 
separates those who contribute to the institution that provides the incentives from those who do not contribute. 
Our model not only takes these points into consideration but also lets individuals in each group decide, though 
a voting process, the nature of the institution they create: Either a sanctioning institution (that provides negative 
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incentives to anti-social group members) or a rewarding institution (that provides positive incentives to pro-
social group members).

Our new Bottom-Up institutional design is illustrated in Fig.  1. To successfully create an institution, a 
minimum number (nI ) of institution creators needs to be present in each group. The nature (reward/punishment) 
of the Local institution thus created will be decided via a majority rule, that is, an electoral process performed 
by the institution creators: A majority of rewarders (cf. Fig. 1 for strategy identification) leads to a rewarding 
institution, whereas a majority of Punishers originates a sanctioning institution. Mathematically, this implies 
augmenting the CRD to include, besides Cooperators (C) and Defectors (D), rewarders (R) and Punishers (P) 
(see Methods). Consequently, the evolutionary dynamics of the 4 types of individuals will unfold in a simplex 
(phase space) with the shape of a regular tetrahedron, as illustrated in Fig. 2. This setting increases considerably 
the complexity of the present population dynamics compared to previous approaches2–18.

In the stochastic population dynamics with mutations considered here (see Methods), the evolutionary 
dynamics is generally characterized by the occurrence of 2 attractors in the interior of the simplex. Figure 2 
illustrates the prevailing scenario (for intermediate to high values of risk r, r ≥ 0.4) where the attractors are 
depicted with orange solid spheres25. These 2 attractors originate 2 basins of attraction that are typically separated 
by a “fitness barrier” associated with configurations with a nearly constant number of Ds in the population, 
leading to a planar-like surface whose intersection with the simplex is illustrated (qualitatively) by black dashed 
lines.

For low risk, and despite the possible occurrence of 2 attractors, the population is not able to tunnel across 
the fitness barrier, leading to an average configuration of the population that remains very close to the ALL-D 
configuration.

At higher risk, the population is now able to explore the other side of the fitness barrier, such that the 
dynamics becomes dominated by the attractor located in the cooperating region of the simplex, at a configuration 
dominated by Cs (cf. Fig. 2).

In the Supplementary Information (SI) we provide details of the stationary distribution (defined in Methods) 
associated with these different scenarios and we also test the robustness of the results shown to changes in the 
model parameters.

A ubiquitous feature of the CRD (also observed in present model, c.f. Fig. 3) is associated with a transition 
from a defector dominated dynamics at low-risk to a cooperator dominated dynamics at high-risk, irrespective 
of the existence of institutions, as well as of their nature. This behavior translates into a S-shape profile when one 
plots ηG— the population average group achievement, defined in Methods—as a function of risk. Clearly, as 
shown previously, different institutional designs typically contribute to change the critical values of risk at which 
the transition from Defection to Cooperation occurs, as well as the rate of this transition.

The quantity ηG not only captures these transitions in a single curve, but it has the additional advantage of 
allowing one to directly compare the performance of models of different inherent dimensionality. These models 
were generally developed making use of different parametrizations of costs, benefits, rewards and sanctions. 
Because our model encompasses all mechanisms introduced before, we are able to compare the performance 
of all models in the present framework. This is precisely what is shown in Fig. 3 where the main findings of this 
work are shown.

Figure 1.  Schematic representation of the Bottom-Up institutional model developed here to address the 
sustainable governance of GRC making use of the CRD dilemma. There are three pro-social strategies: C 
(Cooperators) P (Punishers) and R (rewarders) that contribute with a fraction c of their endowment to the 
CRD (left-pointing arrows); and one anti-social strategy, D (Defectors), that does not contribute. P and R also 
pay an additional tax πt to fund an Electoral institution (right-pointing arrows) which decides, based on a 
majority rule, how to use its revenue ∆RP : Either to Punish the Ds, to reward the pro-social strategies: C, P 
and R or to reward the pro-social and Punish the anti-social in case of a tie. In the well-mixed approximation, 
the configuration of the population can be specified by the state vector i = {iC , iP , iR, iD}, where iS  is the 
number of individuals using strategy S in the population. We use a corresponding notation to specify the 
composition of each group: j = {jC , jP , jR, jD} where jS  is the number of individuals using strategy S in the 
group—see Methods for full details of the model.
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Results
In the absence of institutions (black dashed line with open circles, where evolutionary dynamics occurs in a 
one-dimensional simplex2) and for the model parameter values indicated in Fig. 3, one needs a critical risk value 
r∗ ≈ 0.755 to reach ηG ≈ 0.5.

Local institutions, either sanctioning (red solid line with solid circles) or rewarding (green dashed line with 
open circles), whose evolutionary dynamics unfolds in a two-dimensional simplex7,12,18) considerably improve 
the overall prospects of cooperation in the CRD: Now ηG ≈ 0.5 is reached at r∗ ≈ 0.695 and r∗ ≈ 0.675, 
respectively.

Further improvement (blue solid line with solid circles, where evolutionary dynamics unfolds in a three-
dimensional simplex—see Fig. 2) is obtained via the present model employing local, electoral institutions, of a 
nature (reward/punishment) that is decided at a group level, case by case, leading to r∗ ≈ 0.640.

The results in Fig. 3 show that the present model, which encompasses electoral institutions of a dual nature, 
outperforms previous approaches considering reward-only or punishment-only institutions (see also18), more 
so if we take the rate of change from defection to cooperation, estimated by computing, at the r∗ values reported 
before, the quantity (dηG/dr)r=r∗ , which is maximal for the present model.

Figure 2 proves helpful in developing an intuition to understand the superior performance of the present 
model compared to others, in particular to models of reward-only institutions. Indeed, in reward-only models, 
the evolutionary dynamics proceeds exclusively along the triangular D-C-R face of the tetrahedron. This will 
constrain possible paths towards the cooperative attractor to those pertaining to the green class illustrated in 
Fig. 2. The paths belonging to the red class, also illustrated in Fig. 2 to be accessible in the present Electoral 
model, are not available in reward-only models, which explains the less cooperative dynamics observed for 
these models. A similar argument is valid for punishment-only institutions which, per se (and for most model 
parameters), lead to poorer overall performance compared to reward-only institutions. Indeed, if we estimate 
the fraction of red-type to green-type evolutionary trajectories obtained via computer simulations of time 
evolution, starting from the vicinity of the ALL-D configuration, we obtain a (risk-dependent) value of ∼ 0.2 
(for r = 0.8), which supports the intuition that punishment-only institutions are less efficient than reward-only 
institutions, although their combination, via the electoral process developed here, provides superior results. 
Similar conclusions can be drawn if we compute the fraction of time punishment institutions prevail over 
rewarding institutions and vice-versa, as shown in the SI.

It is also worth pointing out that, as illustrated in Fig. 2, Cs clearly dominate in the configuration defined by 
the cooperative attractor of the stochastic evolutionary dynamics; however, it is important to realize that there 

Figure 2.  Stochastic Evolutionary dynamics of the Bottom-Up Electoral model developed here, showing that 
the overall dynamics is dominated, for most parameter values, by 2 interior attractors, both depicted with 
solid orange spheres: One close to the ALL-D configuration, and another (“cooperative”) at a configuration 
where Cs clearly dominate. The black and blue arrows (to the left of the dashed triangle) illustrate the most 
likely paths (in a stochastic sense) that converge to the ALL-D attractor, whereas the blue, green and red 
arrows (to the right of the dashed triangle) illustrate those paths that converge to the cooperative attractor. 
Whenever r < 0.5 (for the model parameters chosen) the population remains, most of the time, near the 
ALL-D configuration, well below the fitness barrier illustrated by black dashed lines that qualitatively represent 
the intersection of the (quasi-planar) fitness barrier top surface with the surface of the simplex. Whenever 
r > 0.7 (see Fig. 3) the population is now able both to tunnel through the barrier and to evolve towards the 
cooperative attractor where (in a total of 70 individuals) there are 52 Cs, 7 Rs, 6 Ps and 5 Ds. Finally, among the 
plethora of trajectories (in blue) converging to the “cooperative” attractor, we distinguish 2 types belonging to 
different “classes” of evolutionary paths: 1) In green we illustrate paths where convergence evolves mostly due 
to an initial rise of Rs without any significant participation of Ps. 2) In red, paths where convergence evolves 
mostly through a significant increase of Ps without any significant participation of Rs. As discussed in detail in 
the main text, the first class of trajectories is more abundant than the second class. Parameters used: Z = 70
µ = 1/Z , β = 5, N = 8, npg = 6, nI = 2, b = 1, c = 0.1, δ = 2, πt = 0.03, r = 0.8.
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are small, but non-negligible, numbers of both Rs and Ps present in the population in this configuration. These 
numbers (note that, for the parameters employed in Fig. 2 the average number of Ps and Rs grow from 1 at 
r = 0.5 to 5 and 6 at r = 0.8, respectively) ensure the existence of a reservoir of institutional individuals that are 
able to maintain some policing of groups, rewarding/sanctioning their members accordingly.

Discussion
As stated in the beginning, sanctions are harder to implement than rewards, even when they result from the 
celebration of International Agreements. Therefore, it is gratifying to realize that rewarding institutions alone, 
which have an easier job in implementing their goals, are generally more efficient to promote cooperation than 
sanctioning institutions, cf. Fig. 3.

The present model, however, reinforces the idea that sanctioning institutions are important in “policing” free-
riders7,12,26, here at the group level, where sanctioning is more likely to be effective.

In the present model, our analysis concentrated on the long time distribution of strategies in the population, 
by computing the stationary distribution and associated observables. This methodology allowed us to compare 
the performance of different rewarding and sanctioning models with different inherent dimensionality, which 
was our primary goal. This said, we did not address in detail other aspects of the present model which are also 
of relevance, namely the behavior of strategies in time. As is well known, evolutionary game models may lead 
to oscillatory behaviour, both under deterministic27–29 and stochastic30,31 dynamics. In the present model, the 
prevailing scenario portrayed in Fig. 2 does not lead to periodic oscillations, although one cannot rule out the 
occurrence of oscillatory behavior for particular parameter combinations or in situations where spatial effects 
are added to the model.

To summarize, we developed a new bottom-up model of institutional governance of risky commons which 
allows the creation of flexible, local institutions, by introducing a threshold requirement for their formation 
at a local, group level, and whose nature (reward or punishment) is decided, also locally, via a voting process 
(majority rule).

This model not only promotes the self-organization of cooperation in the population for values of risk 
significantly lower than previous models, but also keeps reward as the dominant mechanism while keeping 
sanctioning mechanisms available at all times, and applied at a local level (that is, in smaller groups), which helps 
to make their efficiency more feasible.

Methods
In all cases, we shall employ evolutionary game theory of finite populations, where the (stochastic) dynamics 
proceeds in discrete time through a sequence of one-step selection-mutation processes, with mutation probability 
µ and selection pressure β (see below).

Figure 3.  The population average group achievement ηG (defined in Methods) is plotted as a function of 
risk for the case of i) No institutions (black dashed line with open circles); ii) Local sanctioning (punishing) 
institutions (red solid line with solid circles); iii) Local rewarding institutions (green dashed line with open 
circles) and iv) Local Electoral institutions (blue solid line with solid circles). Clearly, the present bottom-
up approach leads to higher overall cooperation, for all values of risk, compared to other models developed 
previously. Parameters used: Z = 140, µ = 1/Z , β = 2N = 8, npg = 6, nI = 2, b = 1, c = 0.1, πt = 0.03
, δ = 2.
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We further assume a well-mixed population of size Z where individuals form groups of size N and engage 
in a CRD with group threshold npg . Institutions are endogenously created via the contributions from pro-
social individuals in each group (except Cooperators), a process that requires a minimum threshold nI  of those 
individuals present in each group.

Individuals adopt, each, one of the 4 following strategies: Cooperators (Cs), Punishers (Ps), rewarders (Rs) 
and Defectors (Ds).

Each possible configuration of the population can be represented by a state vector i = {iC , iP , iR, iD}, 
where iS  is the number of individuals using strategy S in the population.

Individuals have an initial endowment of b and meet in groups of size N, whose composition can be specified 
by a corresponding state vector j = {jC , jP , jR, jD} where jS  represents the number of individuals using 
strategy S in the group.

Three strategies—C, R and P are pro-social, and thus individuals who employ them contribute a fraction c of 
their endowment b to the CRD. D, in turn, is an anti-social strategy, as individuals choose not to contribute and 
thus keep all of their initial endowment—see Fig. 1.

For the CRD to succeed in producing a public good, the number of pro-social individuals in a group needs 
to exceed a group threshold npg .

Whenever the threshold is not met, then everyone in the group will lose their endowments with a risk 
probability r. Therefore the base payoff related to the CRD can be written

	 π0(j) = b · θ (jCP R; npg) + (1 − r)b · θ̄ (jCP R; npg)� (1)

where θ(x; y) is the Heavide step function (θ(x; y) = 1 if x ≥ y and 0 otherwise), θ̄ = 1 − θ and 
jCP R = jC + jP + jR.

Ps and Rs contribute an additional tax, πt, to a local electoral institution at the group level. This institution will 
be created and will have an impact proportional to the total contributions of pro-social individuals provided a 
minimum threshold of participants nI  is reached in a group of size N

	 ∆RP (jP , jR) = δ · πt · jP R · θ (jP R; nI)� (2)

where δ ≥ 1 is a multiplication factor that reflects a possible return on the amount contributed via taxes to the 
formation of an institution.

Each local institution is here an electoral institution because the decision on the nature of the institution is based 
on a majority rule:

If the number of Ps is larger than the number of Rs then all anti-social individuals (Ds) in the group will lose 
some amount (same to all) totaling ∆RP ; if the number of Ps is smaller than the number of Rs then ∆RP  will 
be evenly distributed by all the pro-social individuals (Cs, Ps and Rs); if a tie is reached, i.e. the number of Ps is 
the same as Rs, then ∆RP /2 is used to reward pro-social individuals and the other ∆RP /2 is used to punish 
anti-social individuals. Figure 1 illustrates the workings of the present model.

The resulting payoffs associated with each strategy read, 

	
πC (j) = π0(j) − cb + ∆RP (jP , jR)

jCP R
θel (jR; jP ) � (3a)

	 πP (j) = πC (j) − πt � (3b)

	 πR (j) = πP (j) � (3c)

	
πD = (j)π0(j) − ∆RP (jP , jR)

N − jCP R
θel (jP ; jR) � (3d)

 where θel(x; y) is a threshold function which encodes the elective institution described above

	
θel(x; y) =

{
0 if x < y
1/2 if x = y
1 otherwise

� (4)

Stochastic Evolutionary Dynamics

In the framework of Evolutionary Game Theory of finite, well-mixed populations, the fitness fSk (i) of an 
individual adopting strategy Sk  in a population with a configuration i is given by the average payoff of strategy 
Sk  for that particular configuration, given by
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fSk (i) =
(

Z − 1
N − 1

)−1 j=N−1∑

j = 0
jDCP R = N − 1

πSk (j)
(

iSk − 1
jSk

) 4∏

l = 1
l ̸= k

(
iSl

jSl

)
� (5)

where a hypergeometric sampling of the population is performed, jDCP R = jD + jC + jP + jR and j = A 
stands for jD = jC = jP = jR = A.

The evolution of the population takes place via a series of discrete one-step selection-mutation processes; as a 
result, at any discrete time-step, the state of the population depends only on its present configuration, which 
means that its evolution can be described by a Markov Process, whose probability density function (PDF) pi 
satisfies the discrete Master Equation32

	
pi(t + τ) − pi(t) =

∑
i′

{Tii′ pi(t) − Ti′ipi(t)}� (6)

where Tii′  and Ti′i are the transition probabilities between states i and i′ and vice-versa respectively.

The non-diagonal transition probabilities can be readily calculated given the discrete one-step nature of the 
selection-mutation process,

	
TSl→Sk (i) = (1 − µ) il

Z

ik

Z − 1P (fSk − fSl ) + µ
il

(S − 1)Z � (7)

where µ is the mutation probability and the notation TSl→Sk (i) refers to the transition probability starting from 
state i and having one individual with strategy Sl change its strategy to strategy Sk  via the pairwise comparison 
rule33,34 P (x) = [1 + exp (−βx)]−1 which employs the Fermi function from statistical physics, where the 
inverse temperature β (β ∈ R+

0 ) represents here the strength of natural selection. The diagonal transition 
probabilities can be calculated using the relation Tii = 1 −

∑
i′ ̸=i

Ti′i.

We shall be interested in determining the stationary distribution (pi) which is given by8 the eigenvector 
associated with the highest eigenvalue (of value 1) for the transition matrix TT : pi(i) = [Tii′ ]T pi(i).

The transition probabilities further allow us to compute the most likely path the population will follow 
starting from a given configuration, by means of the gradient of selection ∇i

	
∇i =

s∑
k=1

(
T

Sk+
i − T

Sk−
i

)
uk � (8)

where T Sk+
i  and T Sk−

i  represent the probability the number of individuals adopting strategy Sk  increases or 
decreases by one, respectively and the unit vectors uk  define the basis of the phase space dynamics.

Finally, making use of the stationary distribution pi we can compute other quantities of interest such as ηG, the 
population average group achievement,

	
ηG =

∑
i

pi(i)aG(i)� (9)

where aG(i) is the so-called group achievement, computed for each population configuration i by averaging 
over all possible group configurations for which success in the CRD is granted

	

aG(i) =
(

Z
N

)−1 j=N∑

j = 0
jDCP R = N

θ (jCP R; npg)
4∏

l=1

(
iSl

jSl

)
� (10)

Naturally, we may construct similar formulas to compute the incidence of reward or punishment for each 
configuration i and subsequently compute the population average amount of reward and punishment for each 
set of model parameters—see SI. A freely available implementation of the general equations above can be found 
in the repository35. For a detailed acccount of the methods employed see36.
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Data availability
All data supporting the findings of this study are available in the Plots presented within the paper and its Supple-
mentary Information. Files with raw data used to generate the plots are available from the corresponding author 
on reasonable request.
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In the following, we explore the impact of changing the different model parameters. The results are quite intuitive, in the sense
that they correspond to what one expects from general threshold public goods games:
Increasing population size Z and selection pressure β will act to sharpen the transition from defection to cooperation as a
function of risk, as shown in SI Figs. 1 and 2, respectively. Correspondingly, larger group sizes N will require a higher risk
for the same transition to occur, as shown in SI Fig. 3, the same happening if, as shown in SI Fig.4, one increases the public
good threshold npg. Finally, in what concerns the institution parameters (nI ,πt and δ ) we show in SI Fig. 5 how increasing
the institutional threshold nI acts to increase the risk at which the transition from defection to cooperation takes place. This
transition, in turn, is affected in different ways as we change the individual taxes πt incurred by both Ps and Rs, as shown
in SI Fig. 6 (maintaining all other model parameters invariant). Indeed, for very small values of πt , small tax increases will
be beneficial to overall cooperation. Further increases, however, inevitably become detrimental to overall cooperation. Note,
however, that high values of πt are generally beneficial to cooperation at low-risk. Finally, as shown in SI Fig. 7, increasing the
institutional return δ helps cooperation to emerge at a lower risk.



Figure 1. ηG versus risk for different population sizes. We changed population size Z maintaining all other model
parameters constant (see below). With increasing Z one observes that the transition from defection (ηG → 0) to cooperation
(ηG → 1) occurs in an increasingly narrower interval of risk. At the same time, the value of risk at which ηG = 0.5 increases.
In the following figures, we shall use the value Z = 100 as the reference population size. As the figure shows, this value shows
an intermediate behavior between small and very large population sizes, retaining the computational feasibility of the
calculations, which become prohibitevely expensive for large populations. Parameter values used: b = 1, c = 0.1, µ = 1/Z,
β = 2 N = 8, npg = 6, nI = 2, πt = 0.03, δ = 2.
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Figure 2. ηG versus risk for different values of the selection pressure β . We changed the selection pressure β while
maintaining all other model parameters constant (see below). Similar to changing population size Z, increasing β sharpens the
transition from defection (ηG → 0) to cooperation (ηG → 1), also shifting to higher values the value of risk at which ηG = 0.5.
Parameter values used: b = 1, c = 0.1, Z = 100, µ = 1/Z, β = 2 N = 8, npg = 6, nI = 2, πt = 0.03, δ = 2.
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Figure 3. ηG versus risk for different values of the group size N. We changed group size N maintaining all other model
parameters constant except npg (see below), which we also changed to keep the ratio npg/N in a range of comparative values.
This means that we use npg = 4 for N = 6 (npg/N = 0.67), npg = 6 for N = 8 (npg/N = 0.75) and npg = 8 for N = 10
(npg/N = 0.80). With increasing N (and, correspondingly, npg) one observes that the transition from defection (ηG → 0) to
cooperation (ηG → 1) occurs at increasingly higher values of risk. This is a general feature of threshold Public Goods Games
that is retained in the present model.
Parameter values used: b = 1, c = 0.1, Z = 100, µ = 1/Z, β = 2, nI = 2, πt = 0.03, δ = 2.
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Figure 4. ηG versus risk for different group threshold values. We changed the group threshold value npg maintaining all
other model parameters constant (see below). With increasing npg one observes that the transition from defection (ηG → 0) to
cooperation (ηG → 1) occurs at increasingly higher values of risk. This is a general feature of threshold Public Goods Games
that is retained in the present model.
Parameter values used: b = 1, c = 0.1, Z = 100, µ = 1/Z, β = 2 N = 8, npg = 6, nI = 2, πt = 0.03, δ = 2.
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Figure 5. ηG versus risk for different institutional threshold sizes. We changed institutional threshold (nI) value
maintaining all other model parameters constant (see below). With increasing nI one observes that the transition from defection
(ηG → 0) to cooperation (ηG → 1) occurs at increasingly higher values of risk, as one would expect.
Parameter values used: b = 1, c = 0.1, Z = 100, µ = 1/Z, β = 2 N = 8, npg = 6, πt = 0.03, δ = 2.
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Figure 6. ηG versus risk for different individual institutional tax values. We changed the amount that pro-institutional
individuals (Ps and Rs) must contribute to create an institution at the group level (πt ). We maintained all other model
parameters constant (see below). The lowest value plotted (πt = 0.03) corresponds to the most used value throughout the
manuscript. For smaller values of πt (not shown) the transition from defection (ηG → 0) to cooperation (ηG → 1) occurs for
slightly larger values of risk compared to πt = 0.03. In other words, increasing πt is beneficial to cooperation for low values of
πt . With increasing πt we still observe an overall benefit regarding the emergence of cooperation (see the results for πt = 0.1),
but this benefit disappears when the amount contributed via πt becomes too large, as shown in the figure for an order of
magnitude increase of πt . This said, increasing taxes is beneficial at very low risk, being detrimental at high risk.
Parameter values used: b = 1, c = 0.1, Z = 100, µ = 1/Z, β = 2 N = 8, npg = 6, nI = 2, δ = 2.
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Figure 7. ηG versus risk for different institutional return values δ . We changed the value of the institutional return δ

maintaining all other model parameters constant (see below). With increasing δ one observes that, as expected the positive role
of institutions is greatly enhanced, sizably reducing the risk value at which ηG = 0.5 occurs.
Parameter values used: Z = 100, µ = 1/Z, β = 2 N = 8, nI = 2, b = 1, c = 0.1, πt = 0.03, δ = 2.
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Stationary Distributions
In SI Fig. 8 we plot the stationary distribution associated with a particular example, at high risk (r = 0.7) where overall
cooperation dominates the dynamics. For S = 4 strategies, the visualization of the stationary distribution is non-trivial, and
therefore we divide the figure in three panels, plotting the stationary distribution in domains of increasingly lower dimensionality.

In panel a) we show the full simplex, choosing a perspective that best illustrates the accumulation of strength in the vicinity
of the D-C-R plane, although it is clear that, in the vicinity of the cooperative attractor, the stationary distribution extends
somewhat inside the simplex, towards the "P"-vertex. This becomes clearly visible if we make a triangular cut of the simplex at
a constant value of number of Ds in the population, in this case iD = 9 (the number of Ds at which the maximum of the stationary
distribution occurs). The result is shown in panel b), for the triangle joining the configurations R∗ → i = (09,00,00,61),
C∗ → i = (09,61,00,00) and P∗ → i = (09,00,61,00), also illustrated in panel a) by means of a blue triangle, showing how
strength penetrates into the interior of the simplex. Finally, panel c) shows the relative intensity of the two attractors referred in
the main text – the cooperative attractor at high number of Cs and the defective attractor at high number of Ds. We thus plot the
values of the stationary distribution along the edge D-C, illustrating the fact that the population spends more time in the vicinity
of the cooperative attractor than in the vicinity of the other attractor.

SI Fig. 9 shows, for the parameters indicated, all configurations with a probability of reward (in green) and punishment (in
red) greater than 90%; This three-dimensional distribution encompasses the P-R edge, along which we plot the probability
distributions to punish (in red) to reward (in green) as well as to punish-and-reward (in black) along this edge.
Note that, similarly to what was done when computing ηG, we can also investigate the behavior of the population average
probabilities of reward and punishment. Indeed, we can compute the population average probabilities

Prob(P) = ∑
i

pi(i)aP(i) (1a)

Prob(R) = ∑
i

pi(i)aR(i) (1b)

where

aP(i) =
( j: jk=N)

∑
( j: jk=0)

θ ( jPR;nI) ·θ (P;R) ·H( j; i,Z,N) (2a)

aR(i) =
( j: jk=N)

∑
( j: jk=0)

θ ( jPR;nI) ·θ (R;P) ·H( j; i,Z,N) (2b)

In SI Fig. 10 we plot Prob(R), Prob(P) and the ratio Prob(P)/Prob(R) as a function of risk. Clearly, the reward probability
is always larger than punishment, and they both grow with increasing risk. However, as risk increases, the ratio decreases and
stabilizes as ηG approaches 1. The figure clearly shows that, for any value of risk, both reward and punishment are important
and contribute to the success of the electoral model.
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Figure 8. Stationary distribution for a specific set of model parameters. We plot the stationary distribution pi (see
Methods in main text for details) for: a) All possible configurations associated with a finite population of size Z = 70 (see
model parameters at the end). Since we selected r = 0.7, the cooperative attractor associated with a high number of Cs
dominates the stochastic evolutionary dynamics, indicating that the population spends more time in its vicinity. Furthermore,
the picture also illustrates the fact that the stationary distribution is mostly concentrated on the D-C-R planar face of the
tetrahedron, although it is also apparent that it extends towards the interior of the simplex. Panel b) illustrates the extent to
which the stationary distribution penetrates into the interior of the simplex, by defining the blue triangle shown in panel a that
joins the configurations R∗ → i = (08,00,00,62), C∗ → i = (09,62,00,00) and P∗ → i = (09,00,62,00), characterized by, in
all cases, the number of Ds remaining constant and equal to 9, precisely the value at which the stationary distribution is
maximal in the vicinity of the cooperative attractor.
Finally, panel c) shows the stationary distribution along the edge "D-C", illustrating the fact that the population spends more
time in the vicinity of the cooperative attractor than in the vicinity of the defective attractor.
Parameter values used: b = 1, c = 0.1, r = 0.7, Z = 70, µ = 1/Z, β = 5 N = 8, npg = 6, nI = 2, πt = 0.03, δ = 2.
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Figure 9. Probability of each incentive type for a specific set of model parameters. We plot: a) All the configurations
with a probability of reward (in green) and punishment (in red) higher than 90% associated with a finite population of size
Z = 70 (see model parameters at end). Panel b) shows the probability that each type of incentive will be applied as a function
of population configuration along the P-R edge. p(Tie") represents the probability that a tie happens in a group ( jP= jR) for a
given configuration of the population.
Parameter values used: Z = 70, N = 8, npg = 6, nI = 2.
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Figure 10. Probability of reward, punishment and their ratio as a function of risk. We plot the probability of punishment
(red line with solid circles), of reward (green line with solid squares) as well as the ratio between these two probabilities (black
line with solid squares) as a function of risk. Both Prob(R) and Prob(R) exhibit a similar behavior with risk, stabilizing at
high risk, when ηG approaches 1. However, for all values of risk we have that Prob(R)> Prob(P), although the ratio
decreases with increasing risk. Same parameters as in Figure 3 of main text.
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