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Impact of multiple delays on the governance of risky commons
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Long-time global cooperation is required to reduce CO2 emissions towards controlling climate change, one
of the most paradigmatic examples of a risky common. The problem has been often modeled, theoretically,
employing the so-called Collective Risk Dilemma (CRD), a threshold public goods game in the presence
of risk, which has been shown to play a crucial role. Up to now, however, the long delays that mediate (i)
political decisions and their implementation, (ii) implementations and their effective emissions reduction, and
(iii) emissions reduction and risk assessment, have been largely ignored. Here we investigate how these multiple
delays affect overall cooperation, by analyzing the evolutionary game dynamics of a recently developed variant
of the CRD model where the dynamical feedback between risk and cooperation is incorporated. We show how
the consideration of multiple, incremental delays may lead to scenarios that range from the conventional wisdom
of straight delay-intrinsic destabilization of otherwise stable fixed points, to scenarios in which additional delays
may limit the impact of delay-intrinsic destabilization. We trace these different outcomes back to the scaling
relation between risk feedback and cooperation and discuss under which conditions multiple delay effects may
actually foster global cooperation.
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I. INTRODUCTION

The Kyoto protocol (1997) and the Paris Agreement (2015)
have earned so much popularity that nowadays they have
been incorporated into the folklore of global warming. Yet, 8
years after Paris, the Copernicus observatory announced that
“We’ve ‘lost’ 19 years in the battle against global warming
since the Paris Agreement” [1] based on linear extrapolation
of longitudinal data on Earth’s average temperature. This is
but one example of a large corpus of information stating that
the effects of political decisions take too long to implement,
leading to sizable deviations from targets initially determined.
Indeed, it is now clear that when dealing with climate change,
time intervals between cause and effect are best measured in
decades rather than years, with implications that are yet to be
understood. The Copernicus news relates what we may des-
ignate by original cause—political decision—and (ultimate)
effect—Earth average temperature. However, there is a long
ongoing process mediating the original cause and the ultimate
effect. First, as stated, political decisions take time to be
implemented. Second, implementation takes (a long) time to
produce measurable effects, in particular, those derived from
reduced CO2 emissions [2] Third, the level of widespread
adherence to political decisions, together with the impact of
their effects on global emissions, also influences the assess-
ment of the risk of failing to meet the targets originally agreed
upon. Risk assessment, in turn, should not be overlooked, as it
feeds back into countries’ willingness to cooperate to reduce
global warming, thereby influencing future decisions. Here we
investigate the impact of these time intervals between causes,
effects, and feedbacks making use of a recently developed
variant of the original Collective Risk Dilemma (CRD) [3]

that we designate by Risk-Feedback CRD [4] (RFCRD) where
risk, shown to play a crucial role as a fixed, external parameter
in the CRD, now becomes a dynamical feedback variable
of the model. This approach provides perhaps the simplest
workable framework in which to investigate the multiple delay
problem discussed above (compare with a related framework
developed in Ref. [5]). As a threshold public goods game
[3,6], an evolutionary game theoretical investigation of the
RFCRD leads to a nonlinear dynamical system problem. The
effects of delay in this type of system have been investigated to
some extent [7–11], but results obtained so far cannot account
for the multiple types of delays we address here. The general
message is that delays imposed on dynamical systems do
not change the location of the fixed points of the dynamics,
but typically act to reduce the stability of otherwise stable
fixed points of the system. In general, there is a limit above
which these equilibria lose stability due to the appearance
of a Hopf bifurcation [7]. We will show, in the following,
how the consideration of incremental delays acts to change
the stability patterns of the system in fundamental ways, and
we shall characterize the limits within which the stability of
the system survives. As a result, the present model will allow
us to understand in detail the role of multiple delays in the
dynamics, in particular, how they may reduce or enlarge both
the regions of stability and the basins of attraction of the
cooperative regimes which, as we also show, depend on how
risk feedback scales with cooperation.

II. MODEL

Let us consider, for simplicity, an infinite, well mixed
population of individuals who engage in a threshold Public
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Goods game characterized by a limited set of behaviors: to
Cooperate (C) or to defect (D). Players each have an ini-
tial endowment b. Cooperators (Cs) contribute a fraction c b
of their endowment (where c stands for the cost-to-benefit
ratio) while defectors (Ds) do not contribute. Furthermore,
we require a minimum collective investment (threshold) to
ensure any benefit: If a group of size N does not contain at
least M Cs, all members will lose their remaining endow-
ments with a probability r (the global risk perception) [3];
otherwise everyone will keep whatever they have. Rational
players facing this one-shot dilemma will opt for defection,
as Ds never get a lower payoff in mixed groups. However, this
reasoning ignores the collective (populationwide) dynamics,
where a continuous (and eventually long-term) process of
behavioral revision takes place [3,12–14]. In an evolutionary
game theory (EGT) formulation [15,16], individuals tend to
copy others whenever these appear to be more successful,
allowing policies to change as time goes by, likely influenced
by the behavior (and achievements) of others. In this frame-
work, the evolution of the fraction x of Cs (and 1 − x of Ds)
in a large population is governed by the gradient of selec-
tion associated with the replicator dynamics equation [15,16]
ẋ = x(1 − x)( fC − fD) characterizing the behavioral dynam-
ics of the population, where fC ( fD) is the fitness of Cs (Ds),
here associated with the average game payoffs of each player
type in the population. According to the replicator equation,
Cs (Ds) will increase (decrease) in the population whenever
ẋ > 0 (ẋ < 0). Random sampling leads to groups whose com-
position follows a binomial distribution. Hence we may write
for the fitness of Cs and Ds

fC (x) =
N−1∑
k=0

(
N − 1

k

)
xk (1 − x)N−1−k�C (k + 1)

and

fD(x) =
N−1∑
k=0

(
N − 1

k

)
xk (1 − x)N−1−k�D(k),

where �C (k) [�D(k)] stands for the payoff of a C (D) in a
group of size N with k Cs. The payoff of a D can be written as

�D(k) = b{θ (k − M ) + [1 − r(η)][1 − θ (k − M )]},
where θ (x) = 0 if x < 0, and 1 otherwise, whereas the payoff
of a C is given by

�C (k) = �D(k) − c b (0 < c � 1),

and where 0 � M � N stands for the coordination threshold
[3,6] necessary to produce a collective benefit. In the RFCRD
[4], risk becomes a function of x via the fraction of groups that
have k � M Cs, which we denote by η(x),

η(x) =
N∑

k=M

(
N

k

)
xk (1 − x)N−k.

For r(η) we retain the essential parametric dependence intro-
duced in [4] and write r[η(x); σ ] = [1 − η(x)]σ . This scaling
leads to a single nonlinear differential equation (see below)
describing the risk-feedback dynamics, as opposed to the re-
lated framework of Ref. [5] where a system of two coupled

FIG. 1. Risk dependence on cooperation. Risk (r) is plotted as
a function of the fraction (x) of cooperators in the population for
two values of the parameter σ that controls how r scales with x
(see equation shown in the figure): σ = 0.25 (red curve) and σ =
0.75 (blue curve). These two curves portray two different scenarios
describing how risk changes with cooperation: For σ = 0.25 risk
declines slowly with increasing cooperation (and increases rapidly
as cooperation decreases). For σ = 0.75 risk declines faster with
increasing cooperation compared to σ = 0.25.

nonlinear differential equations was set up to describe a simi-
lar dynamical risk-feedback process in the absence of delay.

Figure 1 illustrates the role of the parameter σ in charac-
terizing the scaling feedback between risk and cooperation.
As shown in Fig. 1, risk (r) declines with increasing coopera-
tion (x). However, when σ = 0.25 risk decreases slower with
increasing cooperation compared to the scaling σ = 0.75,
which provides a more optimistic scenario. Indeed, high risk is
known to foster cooperation in the CRD [3]. In the following
we shall investigate the effects of imposing different delays
using the two σ values depicted in Fig. 1. In Fig. 2 we set the
stage by examining the evolutionary dynamics of the RFCRD
in the absence of delay. Inclusion of delay(s) will change the
scenario portrayed in panels (b)–(d) of Fig. 2, though not the
structure of four fixed points depicted in panel (a), which
characterize the evolutionary dynamics: (a) (defective) stable
fixed point (DS) at full defection (x = 0), an internal unstable
fixed point (IU) at x = 0.305, an internal stable fixed point
(IS) at x = 0.751, and, finally, a (cooperative) unstable fixed
point (CU) at full cooperation (x = 1).

In line with the discussion above, the rate of change of
behavior at time t0, ẋ(t0) will result from a population be-
havior (dictated by fitness in the RFCRD) at a previous time
t1 = t0 − τ (τ � 0), when decisions were taken. Moreover,
these decisions, in turn, were based on a risk assessment
which was made eventually before, at some relative time
t2 = t1 − δ (δ � 0). This means that the replicator equation,
with these incremental delays included, formally reads

ẋ(t ) = x(t )(1 − x(t ))[ fC{x(t − τ ), r[x(t − τ − δ)]}
− fD{x(t − τ ), r[x(t − τ − δ)]}]. (1)

It is worth noting that, similar to Ref. [7], Eq. (1) leaves
invariant the number and location of interior fixed points of
the evolutionary dynamics. As discussed in Ref. [17], this
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FIG. 2. Evolutionary dynamics without delay. (a) Gradient of
selection (ẋ) as a function of the fraction of Cs (x) in the population
making use of the RFCRD model (which includes risk feedback
in the form r[η(x)]; cf. Fig. 1). The solid black circle indicates
the location of the IS (x = 0.751) of the dynamics, leading to a
coexistence of ≈75% Cs with ≈25% Ds; the open black circle
indicates the location of the IU (x = 0.305) of the dynamics. Two
additional fixed points characterize the evolutionary dynamics: the
CU (x = 1) and the DS (x = 0). This structure of dynamic equilibria
is a characteristic feature of threshold public goods games and the
RFCRD is no exception. The right panels show how the evolution
of the fraction of Cs in time depends on the initial fraction of Cs
one starts with [indicated with colored squares in (a)]: (b) below
the IU (red); (c) between the IU and the IS (blue); (d) above the
IS (green). As expected, only starting below the IU will lead to a
collapse of cooperation, all other scenarios leading to a relaxation to
the IS. Model parameters used: b = 5.475, c = 0.1, N = 8, M = 5,
σ = 0.25, leading to a characteristic relaxation time τω � 1 time unit
(see Sec. 2 of the Supplemental Material (SM) [18]).

so-called social-type model is not the only way one may
include delay effects in evolutionary models, in which case
such invariance no longer necessarily holds [11,19].

III. RESULTS

Let us start by investigating the effect of a single, com-
mon delay in the replicator equation. The standard form [7]
assumes that present behavior derives from a fitness computed
before, with a single delay τ [δ = 0 in Eq. (1)]. Applying
Linear Response Theory [7] to the delay terms in Eq. (1)
assumes that deviations y from the IS—see black solid circle
in Fig. 2—have the form y = eωt , leading to a behavior of the
(complex) ω as a function of the delay τ illustrated in Fig. 3(a)
(we made δ = 0 and used the model parameters of Fig. 2),
predicting that for 0 � τ < τH ≡ 1.57 the IS (at x = 0.751)
is asymptotically stable, whereas at τH a Hopf bifurcation
occurs, at which point undamped oscillations around the IS
emerge [Fig. 3(b)], whose amplitude increases as τ increases
until ultimately all trajectories end in the DS [Fig. 3(d)]. Fur-
thermore, with increasing τ , the frequency of the oscillations
is expected to decrease, associated with the decline of the
imaginary part of ω(τ ) shown in Fig. 3(a) (for additional

FIG. 3. Linear Response predictions and numerical simulations.
Linear Response Theory assumes that deviations from the IS behave
as y = eωt where ω becomes a (complex) function of the delay τ

(see SM Sec. 2 [18]). Here we made δ = 0 in Eq. (1). Panel (a)
illustrates the behavior of the real and imaginary parts of ω(τ ). When
τ = τc = 1.57 a Hopf bifurcation occurs, as the real part of ω crosses
zero, leading to stable oscillations around the IS whose frequency is
expected to decrease with increasing τ . (b) Numerical integration
of Eq. (1) for τ = 1.575, δ = 0, right above the Hopf bifurcation,
exhibiting undamped oscillations in the vicinity of the IS (indicated
with a black solid semicircle, with the IU indicated with a black open
semicircle). (c), (d) Same as (b) computed for higher values of τ

showing that for τ � 7 the system converges to the DS. In all panels
we used the same parameters as in Fig. 2 and x(τ � 0) = 0.74.

details see Sec. 2 of the Supplemental Material (SM) [18],
where we also show, in Fig. S1, the behavior of ω(τ ) for
σ = 0.75).

As shown in Fig. 3(b), the predictions of the linear ap-
proximation (cf. Sec. 2 of the SM [18] for details) hold
compared to the numerical integration of Eq. (1). More-
over, for τ > 4 increasingly complex oscillation patterns are
observed [Fig. 3(c)], ultimately leading to the demise of co-
operation [Fig. 3(d)]. It is noteworthy that the DS at x = 0
is always a stable fixed point of the overall dynamics, and
for τ > 4 it becomes the only attractor. The same qualitative
scenario is obtained for σ = 0.75, except in what concerns the
locations of the interior fixed points and critical delay values,
as shown in the SM in a corresponding figure (Fig. S1 [18]).
It is important to note (cf. caption to Fig. 2) that the value
of the RFCRD game parameter b was chosen, in all cases,
so that deviations from the IS in the absence of delay will
relax to the IS with a characteristic timescale of 1, which may
be conveniently used as a reference timescale with which to
compare the critical values τH discussed here.

Equation (1) with δ = 0 portrays a scenario in which
risk assessment is made instantaneously. This simpler, yet
unrealistic, scenario leads to results that are qualitatively in-
dependent of how risk feedback scales with cooperation (as
determined by the parameter σ ). This becomes apparent when
comparing Fig. 3 and Fig. S1 of the SM [18], and provides
a conventional wisdom scenario of delay-intrinsic destabi-
lization of otherwise stable fixed points of the evolutionary
dynamics, in line with previous studies of delay effects in
evolutionary games [7–11].
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FIG. 4. Linear Response predictions for different delays. Left: Contour plot of Im[ω(τ, δ)] computed for the model parameters of Fig. 1
where σ = 0.25. The red colored regions are associated with a stable regime in the vicinity of the cooperative IS (in which case we have
Re[ω(τ, δ)] < 0). One observes that for small δ > 0 the interval in τ for which the system is stable decreases, increasing when 1 � δ � 5.5,
at which point a new bifurcation occurs, further destabilizing the system (see main text for details). Right: Same as in the Left panel but with
σ = 0.75. In this case, one observes that increasing δ acts to destabilize the IS. The results shown here, however, cannot provide a general
picture of the evolutionary dynamics, as they typically portray the behavior associated with small deviations from the cooperative IS, whereas
in general we are not close to the IS.

Let us now consider the more general case of Eq. (1) in
which we have now two nonzero, incremental delays, τ and δ.
Linear Response Theory applied to this case is considerably
more complex and requires the numerical solution of complex
transcendental equations (see SM Sec. 2 [18] for details).

In Fig. 4 we show the results for Im[ω(τ, δ)] obtained when
σ = 0.25 (left panel) and σ = 0.75 (right panel), evidencing
a very different behavior for these two risk-feedback scaling
regimes, in sharp contrast with what was obtained for a single
nonzero delay τ .

The red regions in both panels are associated with the val-
ues Re[ω(τ, δ)] < 0; that is, they represent regions where the
delays do not affect the original dynamics of the system—at
most, damped oscillations to the IS take place. Clearly, along
the axis δ = 0 one observes the behavior already discussed
before. The right panel of Fig. 4 (associated with σ = 0.75)
shows that, with increasing δ, the stability of the IS due to
two incremental delays is always worse compared to the case
δ = 0. The left panel of Fig. 4 (associated with σ = 0.25), on
the contrary, portrays a more stable scenario as, overall, one
expects that in the region δ > 0, the IS may exhibit a higher
stability compared to the δ = 0 regime.

Only in the interval 0 � δ � 1 is the window of stability
of τ (for fixed δ) (marginally) smaller than for δ = 0. For
1 � δ � 5.5 the window of stability of τ increases with δ

until for δ ∼ 6 it becomes disconnected (moving horizontally)
and subsequently recovers the range of stability in τ already
observed for low δ.

However, to provide a more complete description of the
global dynamics, we must explore how the system behaves
not only away from the Hopf bifurcation boundary, but also
in scenarios where we start far from the IS (abandoning the
assumption of small deviations implicit in Linear Response
Theory—yet, hopefully already in the basin of attraction of

the IS) which mimic more realistically the present World
situation, where we are far from (and below) the IS.

The results are shown in Fig. 5, where we integrated
numerically Eq. (1) spanning a discrete grid in the (τ, δ) pa-
rameter space while starting from different initial conditions
(cf. top panels in Fig. 5 and Sec. 1 of the SM [18]), comput-
ing also, at each grid point, the associated Fourier spectrum
of the time series. We discarded an initial transient in the
computation of the Fourier Transform in order to identify nu-
merically the long-term attractors of the system, be they single
points, periodic orbits, or chaotic attractors, whose signature
is, asymptotically, associated with aperiodic behavior.

Comparing the three panels in Fig. 5, we see that in order
not to miss small amplitude damped or undamped oscillations
around the IS we must choose initial conditions corresponding
to small deviations from the IS. The results show that one
recovers the red region in Fig. 4 associated with the IS as
the final attractor, even in regimes where it can compete with
the DS at x = 0. According to Linear Response Theory, and
similar to the case δ = 0, whenever one crosses the black
boundary depicted in Fig. 4, the system undergoes undamped
oscillations around the IS, whose frequency is predicted to
decrease with increasing τ .

Upon numerical integration of Eq. (1), however, we ob-
serve a somewhat different scenario. Indeed, at the boundary
of the red zone and the blue zone in Fig. 5, the cooperative
attractor becomes a stable periodic orbit, whose frequency
is approximately given by the imaginary part of the solution
of the corresponding transcendental equation (SM, Eq. (S3)
[18]). This approximation of course deteriorates as one moves
away from the boundary of the red region and the ampli-
tude of the stable oscillations increases. As shown in Fig. 5,
undamped oscillations associated with the blue dots evolve
towards a new boundary with a back region where cooperation
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FIG. 5. Time integration of Eq. (1). Time integration of Eq. (1) was carried out for a long time period (t = 10 000). We used the parameters
of Fig. 2 and selected a discrete grid of delay values, where 0 � τ, δ � 8 using 	τ = 	δ = 0.1. Besides the time integration we also performed
a Fast Fourier Transform of the time series after discarding a first transient up to t = 1000. This way, we can easily identify the long-term
attractors of the system, be they single points (such as IS or DS), periodic orbits, or chaotic attractors, whose signature is, asymptotically,
associated with aperiodic behavior. Relaxation (with or without damped oscillations) to the IS is represented by red solid circles. Undamped
oscillations around the IS are represented with solid blue circles. Relaxation (with or without damped oscillations) to the DS are shown
with black solid circles. Finally, green solid circles indicate instability of the numerical integration algorithm. Left: Results obtained for time
integration starting at x = 0.42, close to the location of the IU at x = 0.305 but already in the basin of attraction of the IS located at x = 0.751
(cf. top of panel). Middle: Same as the Left panel but starting from x = 0.77 (cf. top of panel), close but already above the IS. Right: Same as
the Left and Middle panels but starting from x =0.92 (cf. top of panel), already well above the IS. Starting in the vicinity of the IS (Middle)
leads to the pattern that most resembles that obtained from Linear Response Theory shown in Fig. 4(a) in what concerns the red-blue border.
However, the blue-black border indicates (all panels) the occurrence of another bifurcation by which the periodic orbit disappears, leading to
the demise of cooperation.

disappears. Inspection of the behavior of the solutions on the
blue region close to this blue-black boundary (exemplified in
Fig. 6) shows that the transition takes place through a ho-

FIG. 6. Time series for x(t ). We show the time evolution of x(t )
using the model parameters of Fig. 2 where σ = 0.25. Starting close
to the IS (black solid semicircle), for the values of delays τ and
δ indicated, we observe that the amplitude of the periodic orbit is
large enough to reach the IU (black open semicircle). The resulting
interaction leads to a perturbation of the original oscillatory behavior
which, for these values of τ and δ, is not yet strong enough to destroy
the periodic behavior. As we further increase δ or, alternatively,
as we start further away from the IS, the population will converge
to the DS.

moclinic bifurcation—the periodic orbit ceases to exist after
colliding with the IU at x = 0.305. Overall, the large-scale
numerical integration of Eq. (1) shows that, in what concerns
the long-term behavior of the dynamics, three main regimes
emerge, common to both risk-feedback scalings considered
here, whenener one starts within the basin of attraction of
the IS (in the absence of delay): stability, periodic behavior,
and collapse of cooperation. These behaviors are not affected
qualitatively by changing the structure of the initial conditions
implemented in solving Eq. (1) (the results shown correspond
to assuming constant behavior for t � 0).

IV. DISCUSSION

As stated in the Introduction, there is a large corpus of
information, both research data and media coverage of the
detrimental effects of climate change, which have raised an
acute awareness of the associated risks. Moreover, the limited
success of Global Climate Summits, as widely perceived, has
brought in some skepticism regarding any announcement of
success in fighting Global Warming. Both factors contribute,
in our opinion, to favor a scenario for risk-feedback scaling
more akin to σ = 0.25, where risk decline rate with increas-
ing cooperation is lower than that associated with σ = 0.75.
This is good news since, as shown in Figs. 4 and 5, the
stability regime is much more insensitive to the (inevitable)
delays in risk assessment. On the other hand, the present
urgency in fighting Global Warming prompts for an analysis
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of short-term behavior, as opposed to long-term behavior. In
this respect, it is important to note that we “calibrated” our
RFCRD model to relax to the internal stable fixed point with
a characteristic timescale of 1 in the absence of delay (see
caption of Fig. 2 and Sec. 2 of the Supplemental Material
[18]). Clearly, nobody knows to which number this 1 should
be compared with in the real world, more so if we take into
consideration that any internal stable fixed point is undergo-
ing permanent change as we speak. Nonetheless, our model
indicates that for delays in τ as small as roughly twice that
of the calibrated timescale, we are already in an oscillatory
regime. In other words, it is likely that, at present, we are
undergoing an oscillating pattern of cooperation, whose fre-
quency and amplitude will depend sensitively on the actual
delay τ between political decisions and their implementation,
and not so much on the delay δ between risk assessment and
political decision, which is expected to decrease in time, as
science progresses and more data become available. All to-
gether the present situation may support an oscillating pattern
which allows for sustained oscillations of cooperation, whose
amplitude, as shown in Fig. 3, may reach values of x arbitrarily
close to the limit x = 1, that is, full cooperation. Needless
to say, this feature of the dynamics is a consequence of the
infinite population size implicit in Eq. (1). A more realistic
scenario encompasses a stochastic dynamics involving finite
populations (with sizes on the order of hundreds) [3,4,20,21],
as opposed to the deterministic dynamics employed here. In
other words, in realistic cases involving finite populations,
large amplitude oscillations may eventually lead to the fix-
ation into the extreme fixed points (CU at x = 1 or DS at
x = 0). Given the fact that we are still far below the model IS,
and given the past trajectory in addressing Global Warming, it
is likely that we are in a first period of increasing cooperation,
and in this sense, we may approach the CU before any possible
collapse to the DS. Translating the behavior of our model into

a finite population paradigm [7], getting very close to the CU
may actually mean reaching this configuration which, how-
ever, is dynamically unstable, and thus any perturbation will
drive the population away from it. As shown in the right panel
of Fig. 5, the ensuing dynamics may, in extreme cases, lead
to the collapse of cooperation, although this less optimistic
scenario will still take quite some time (many time units;
cf. Fig. 3) to occur.

In summary, delay effects in the coevolutionary dynamics
of risk and cooperation lead to a plethora of behaviors that
may differ substantially not only for different delay values but
also in what concerns short-term versus long-term behavior.
The Hopf bifurcation that we observe in all cases, leading to
the emergence of periodic orbits with amplitudes that tend
to increase with increasing delays, can be superseded by a
homoclinic bifurcation by which the periodic orbit ceases to
exist and the collapse of cooperation ensues, a scenario that
will be perturbed by stochastic effects in finite populations.
At present, our model suggests that we may be undergoing
an oscillatory regime along a trajectory of increasing coop-
eration, and it is up to us to decrease the effective delay
between decision and implementation (τ ) in order to avoid
a full collapse of cooperation.
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SUPPLEMENTAL MATERIAL
1. Supplementary Figures

Figure S1 Linear Response predictions and numerical simulations. A. Linear Response Theory assumes that deviations from the IS behave as 𝑦 = 𝑒𝜔𝑡
where 𝜔 becomes a (complex) function of the delay 𝜏. The panel illustrates the behaviour of the real and imaginary parts of 𝜔(𝜏). When 𝜏 = 𝜏𝑐 = 1.57 a Hopf
bifurcation occurs, as the real part of 𝜔 crosses zero, leading to stable oscillations around the IS whose frequency is expected to decrease with increasing 𝜏.
B. Numerical integration of Eq. (2) for 𝜏 = 1.575, right above the Hopf bifurcation, exhibiting undamped oscillations in the vicinity of the IS (indicated with
a black solid semicircle − with the IU indicated with a black open semicircle). C. and D. Same as B computed for higher values of 𝜏 showing that, for 𝜏 ≥ 7
the IS is no longer stable. In all panels we used the parameters 𝑏 = 5.295,  𝑐 = 0.1,  𝑁 = 8,  𝑀 = 5,  𝜎 = 0.75.
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Figure S2 Long term time integration of Eq. (2). Time integration of Eq. (2) was carried out for a long time period (𝑡 = 10000). We used the parameters
of Fig. 1 and selected a discrete grid of delay values, where 0 ≤ 𝜏,𝛿 ≤ 8 using ∆𝜏 = ∆𝛿 = 0.1. Besides the time integration we also performed a Fast Fourier
Transform of the time series after discarding a first transient up to 𝑡 = 1000. This way, we can easily identify the long term attractors of the system, be they
single points (such as IS or DS), periodic orbits, or chaotic attractors, whose signature is, asymptotically, associated with aperiodic behaviour. Relaxation
(with or without damped oscillations) to the IS is represented by red solid circles; Undamped oscillations around the IS are represented with solid blue circles;
Relaxation (with or without damped oscillations) to the DS are shown with black solid circles; Finally, green solid circles indicate instability of the numerical
integration algorithm. The results shown here correspond to start from an initial fraction of cooperators indicated at the top of the panel, reproducing the left
panel of Fig. 5.

Figure S3 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel.
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Figure S4 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel.

Figure S5 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel.
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Figure S6 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel.

Figure S7 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel.
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Figure S8 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel.

Figure S9 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel, reproducing the middle panel of Fig. 5.
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Figure S10 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel.

Figure S11 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel.
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Figure S12 Long term time integration of Eq. (2). Time integration of Eq. (2) using the same notation and game parameters of Fig S1. The results shown
here correspond to start from an initial fraction of cooperators indicated at the top of the panel, reproducing the right panel of Fig. 5.

2. Linear Response Theory for the Replicator Equation with (multiple) delays
2.1. Notation & definitions
Linearization around a fixed point 𝑥∗assumes

𝑥(𝑡) = 𝑥∗ + 𝑦(𝑡) 𝑥𝑡 = 𝑥∗ + 𝑦𝑡

𝑥(𝑡 − 𝜏) = 𝑥∗ + 𝑦(𝑡 − 𝜏) 𝑥𝜏 = 𝑥∗ + 𝑦𝜏

𝑥(𝑡 − 𝜐) = 𝑥∗ + 𝑦(𝑡 − 𝜐) 𝑥𝜐 = 𝑥∗ + 𝑦𝜐

with the consideration of these 2 possible delays as discussed in the main text, 𝜏 and 𝜐, the Replicator Equation (RE) reads

𝑥̇(𝑡) = 𝑥(𝑡) 1 − 𝑥(𝑡) (𝑓𝐶 (𝑥(𝑡 − 𝜏), 𝑥(𝑡 − 𝜐)) − 𝑓𝐷 (𝑥(𝑡 − 𝜏), 𝑥(𝑡 − 𝜐))
or

𝑥𝑡̇ = 𝑥𝑡 1 − 𝑥𝑡 (𝑓𝐶 ( 𝑥𝜏 , 𝑥𝜐) − 𝑓𝐷 ( 𝑥𝜏 , 𝑥𝜐)
with

  𝑓𝐶 𝑥𝜏 , 𝑥𝜐 = 𝑁−1
𝑘=0 𝐶𝑁,𝑘(𝑥𝜏)Π𝐶 𝑘 + 1, 𝑥𝜐
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𝑓𝐷 (𝑥𝜏 , 𝑥𝜐) = 𝑁−1
𝑘=0 𝐶𝑁,𝑘(𝑥𝜏)Π𝐷 𝑘, 𝑥𝜐

where

𝐶𝑁,𝑘(𝑥𝜏) = 𝑁 − 1𝑘 𝑥𝜏𝑘 1 − 𝑥𝜏 𝑁−1−𝑘

Finally, we shall make the replacement

𝑦𝑡 = 𝑦(𝑡) = 𝑒𝜔 𝑡

and, naturally

𝑦𝜏 = 𝑦(𝑡 − 𝜏) = 𝑒𝜔(𝑡−𝜏)

𝑦𝜐 = 𝑦(𝑡 − 𝜐) = 𝑒𝜔(𝑡−𝜐)

where 𝜔 = 𝑥 + 𝑖 𝑦 is a complex quantity (in general), and will depend on 𝜏 and 𝜐. Our goal here is to determine 𝜔.

2.2. The RF-CRD model
Let us take the RF-CRD model with adaptive risk and different delays; we have the following payoffs

Π𝐷 𝑘, 𝑥𝜐 = 𝑏 𝜃 𝑘 − 𝑀 +  1 − 𝜃 𝑘 − 𝑀 𝑏 (1 − 𝑟 𝜂(𝑁,𝑀,𝑥𝜐) )
Π𝐶 𝑘,𝑥𝜐 = Π𝐷 𝑘,𝑥𝜐 − 𝑐𝑏

where 𝜃 𝑘 − 𝑀 is the usual Heaviside distribution, with 𝜃 𝑘 − 𝑀 = 0 if 𝑘 < 𝑀 and 1 otherwise. We have further that

 𝜂 𝑁,𝑀,𝑥𝜐 = 𝑁
𝑘=𝑀

𝑁𝑘 𝑥𝜐𝑘 1 − 𝑥𝜐 𝑁−𝑘

and

𝑟 𝜂(𝑁,𝑀, 𝑥𝜐) = 1 − 𝜂(𝑁,𝑀, 𝑥𝜐) 𝜎

Themodel parameters we shall explore are 𝑏 = 5.475, 𝑐
𝑏 = 0.1,  𝑁 = 8,  𝑀 = 5,  𝜎 = 0.25, leading to the evolutionary dynamics

portrayed in Fig. 2 of main text. Note that the location of the fixed points of the dynamics depends, for a given value of 𝜎, only
on the ratio 𝑐/𝑏. This way, we fix the absolute value of 𝑏 in such a way that the relaxation time due to small deviations from
the IS in the absence of delay satisfies 𝜏𝜔~1/𝜔~1 time unit, thus providing a natural time scale with which to compare critical
delay values obtained theoretically. For the parameter values above, we obtain, for the location of the fixed points, the values
 𝑥 (IU) = 0.305 and 𝑥 (IS) =  0.751. In the following, we shall linearize the RE in the vicinity of the IS. For generic values of
the parameters, away from bifurcation points, the linearized system describes the behavior of the solutions close to the IS.

2.3. Linearizing the RE with the same delay in all terms ( 𝜐 = 𝜏, instantaneous risk assessment )
Employing the definitions in 2.1, substitution in the RE
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𝑥𝑡̇ = 𝑥𝑡 1 − 𝑥𝑡 (𝑓𝐶 ( 𝑥𝜏) − 𝑓𝐷 ( 𝑥𝜏)
and keeping terms up to first order in 𝑦𝑡 and 𝑦𝜏 leads to

𝑦̇𝑡 = 𝜒 𝑦𝜏 (S1)

with

𝜒 = 𝑥∗ 1 − 𝑥∗ 𝑓𝐶𝑥𝜏 𝑥∗ ,𝑥∗ − 𝑓𝐷𝑥𝜏 𝑥∗ ,𝑥∗

where we defined

𝑓𝐶|𝐷𝑥𝜏 𝑥∗ = 𝜕𝑓𝐶|𝐷
𝜕𝑥𝜏 ( 𝑥𝜏=𝑥∗)

For 𝜎 = 0.25 and game parameters above we obtain 𝜒 = − 0.999.
2.3.1. Looking for a solution to the linearized problem
We try solutions for Eq. S1 of the form

𝑦𝑡 = 𝑦(𝑡) = 𝑒𝜔 𝑡 and 𝑦𝜏 = 𝑦(𝑡 − 𝜏) = 𝑒𝜔( 𝑡−𝜏)

Substituting in Eq. S1 we obtain

𝜔𝑒𝜔𝑡 = 𝜒𝜏 
This equation can be solved analytically making use of the Lambert 𝑊-function, leading to

𝜔 ≡ 𝛼 + 𝑖𝛽 = 1𝜏 𝑊 𝜒 𝜏  
Since 𝜒 < 0, 2 regimes emerge from the expression above :

1. whenever 𝜒 𝜏 satisfies − 1𝑒  ≤ 𝜒 𝜏 < 0 then 𝜔 is a negative real number and we obtain an exponential decay to 𝑥∗;
2. whenever 𝜒 𝜏 < − 1𝑒  then 𝜔 becomes complex with positive imaginary part, such that i) for − 𝜋

2 < 𝜒 𝜏 < − 1𝑒  we obtain

damped oscillations towards 𝑥∗; ii) for 𝜒 𝜏 = − 𝜋
2  and we obtain sustained (undamped) oscillations around 𝑥∗ (zero

real part, corresponding to the Hopf bifurcation); iii) for 𝜒 𝜏 < − 𝜋
2 ,  the real part becomes positive and and we obtain

oscillations of growing amplitude around 𝑥∗.
At the Hopf bifurcation the solution can be written

𝑦(𝑡) = 𝑒𝑖 𝜋2 𝜏𝑐 𝑡

2.4. Linearizing the RE with multiple delays (non-instantaneous risk assessment )
Employing again the definitions in 2.1, substitution in the RE
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𝑥𝑡̇ = 𝑥𝑡 1 − 𝑥𝑡 (𝑓𝐶 ( 𝑥𝜏 , 𝑥𝜐) − 𝑓𝐷 ( 𝑥𝜏 , 𝑥𝜐)
and keeping terms up to first order in 𝑦𝑡 , 𝑦𝜏 and 𝑦𝜐 leads to

𝑦̇𝑡 = 𝜙 𝑦𝜏 + 𝜓 𝑦𝜐 (S2)

with

𝜙 = 𝑥∗ 1 − 𝑥∗ 𝑓𝐶𝑥𝜏 𝑥∗ , 𝑥∗ − 𝑓𝐷𝑥𝜏 𝑥∗ , 𝑥∗

and

𝜓 = 𝑥∗ 1 − 𝑥∗ 𝑓𝐶𝑥𝜈 𝑥∗ , 𝑥∗ − 𝑓𝐷𝑥𝜈 𝑥∗ , 𝑥∗

where we further defined

𝑓𝐶|𝐷𝑥𝜐 𝑥∗ = 𝜕𝑓𝐶|𝐷
𝜕𝑥𝜐 ( 𝑥𝜐=𝑥∗)

2.4.1. Looking for a solution to the linearized problem
We try solutions for Eq. S2 of the form

𝑦𝑡 = 𝑦(𝑡) = 𝑒𝜔 𝑡 , 𝑦𝜏 = 𝑦(𝑡 − 𝜏) = 𝑒𝜔( 𝑡−𝜏) and 𝑦𝜐 = 𝑦(𝑡 − 𝜐) = 𝑒𝜔( 𝑡−𝜐)

Substituting in Eq. S2 we obtain

𝜔 − 𝜙 𝑒−𝜔 𝜏 − 𝜓𝑒−𝜔 𝜐 = 0 (S3)

This generalized characteristic equation is hard to solve analytically for the general case, and was solved numerically using the
software Mathematica. The results are shown in Fig. 4 of main text.


